aboutsummaryrefslogtreecommitdiff
path: root/Data/Hypergraph.agda
blob: 7d22129121b86305834b397dbd4f0c4ed87fcce0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
{-# OPTIONS --without-K --safe #-}

open import Data.Hypergraph.Label using (HypergraphLabel)
open import Level using (Level; 0)

module Data.Hypergraph { : Level} (HL : HypergraphLabel) where

import Data.List.Relation.Binary.Pointwise as PW
import Function.Reasoning as -Reasoning
import Relation.Binary.PropositionalEquality as import Data.Hypergraph.Edge {} HL as Hyperedge
import Data.List.Relation.Binary.Permutation.Propositional as List-↭
import Data.List.Relation.Binary.Permutation.Setoid as open HypergraphLabel HL using (Label) public

open import Data.List using (List; map)
open import Data.Nat using ()
open import Data.String using (String; unlines)
open import Function using (_∘_; _⟶ₛ_; Func)
open import Relation.Binary using (Setoid)

module Edge = Hyperedge
open Edge using (Edge; Edgeₛ)

-- A hypergraph is a list of edges
record Hypergraph (v : ) : Set  where
  constructor mkHypergraph
  field
    edges : List (Edge v)

module _ {v : } where

  open  (Edgeₛ v) using (_↭_; ↭-refl; ↭-sym; ↭-trans)

  show : Hypergraph v  String
  show (mkHypergraph e) = unlines (map Edge.show e)

  -- an equivalence relation on hypergraphs
  record _≈_ (H H′ : Hypergraph v) : Set  where

    constructor mk≈

    module H = Hypergraph H
    module H = Hypergraph H′

    field
      ↭-edges : H.edges  H′.edges

  infixr 4 _≈_

  ≈-refl : {H : Hypergraph v}  H  H
  ≈-refl = mk≈ ↭-refl

  ≈-sym : {H H′ : Hypergraph v}  H  H′  H′  H
  ≈-sym (mk≈ ≡n) = mk≈ (↭-sym ≡n)

  ≈-trans : {H H′ H″ : Hypergraph v}  H  H′  H′  H″  H  H″
  ≈-trans (mk≈ ≡n₁) (mk≈ ≡n₂) = mk≈ (↭-trans ≡n₁ ≡n₂)

-- The setoid of labeled hypergraphs with v nodes
Hypergraphₛ :   Setoid  ℓ
Hypergraphₛ v = record
    { Carrier = Hypergraph v
    ; _≈_ = _≈_
    ; isEquivalence = record
        { refl = ≈-refl
        ; sym = ≈-sym
        ; trans = ≈-trans
        }
    }

open Func

open  using (↭-setoid)

Multiset∘Edgeₛ : (n : )  Setoid  ℓ
Multiset∘Edgeₛ = ↭-setoid  Edgeₛ

mkHypergraphₛ : {n : }  Multiset∘Edgeₛ n ⟶ₛ Hypergraphₛ n
mkHypergraphₛ .to = mkHypergraph
mkHypergraphₛ {n} .cong = mk≈