blob: 18a259baf17a1263ed0a7488bc7def178a745509 (
plain)
| 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
 | {-# OPTIONS --without-K --safe #-}
open import Level using (Level)
open import Data.Hypergraph.Label using (HypergraphLabel)
module Data.Hypergraph {c ℓ : Level} (HL : HypergraphLabel) where
import Data.List.Relation.Binary.Pointwise as PW
import Data.Hypergraph.Edge HL as HypergraphEdge
import Function.Reasoning as →-Reasoning
import Relation.Binary.PropositionalEquality as ≡
open import Data.Hypergraph.Base {c} HL public
open import Data.Hypergraph.Setoid {c} {ℓ} HL public
open import Data.Nat using (ℕ)
open import Function using (_∘_; _⟶ₛ_; Func)
open import Level using (0ℓ)
open import Relation.Binary using (Setoid)
module Edge = HypergraphEdge
open Edge using (Edgeₛ; ≈-Edge⇒≡)
open Func
List∘Edgeₛ : (n : ℕ) → Setoid 0ℓ 0ℓ
List∘Edgeₛ = PW.setoid ∘ Edgeₛ
mkHypergraphₛ : {n : ℕ} → List∘Edgeₛ n ⟶ₛ Hypergraphₛ n
mkHypergraphₛ .to = mkHypergraph
mkHypergraphₛ {n} .cong ≋-edges = ≋-edges
    |> PW.map ≈-Edge⇒≡
    |> PW.Pointwise-≡⇒≡
    |> ≡.cong mkHypergraph
    |> Setoid.reflexive (Hypergraphₛ n)
  where
    open →-Reasoning
 |