aboutsummaryrefslogtreecommitdiff
path: root/Data/Hypergraph/Base.agda
blob: f54468db605ba7b85ad6bde6b19959eced826587 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
{-# OPTIONS --without-K --safe #-}

module Data.Hypergraph.Base where

open import Data.Castable using (IsCastable)
open import Data.Fin using (Fin)

open import Relation.Binary
  using
    ( Rel
    ; IsDecTotalOrder
    ; IsStrictTotalOrder
    ; Tri
    ; Trichotomous
    ; _Respectsˡ_
    ; _Respectsʳ_
    ; _Respects_
    )
open import Relation.Binary.Bundles using (DecTotalOrder; StrictTotalOrder)
open import Relation.Nullary using (¬_)
open import Data.Nat.Base using (ℕ; _<_)
open import Data.Product.Base using (_×_; _,_; proj₁; proj₂)
open import Data.Nat.Properties using (<-irrefl; <-trans; <-resp₂-≡; <-cmp)
open import Level using (Level; suc; _⊔_)

import Data.Vec.Base as VecBase
import Data.Vec.Relation.Binary.Equality.Cast as VecCast
import Relation.Binary.PropositionalEquality as import Relation.Binary.Properties.DecTotalOrder as DTOP

record HypergraphLabel { : Level} : Set (suc ) where
  field
    Label :   Set     isCastable : IsCastable Label
    -- _[_≈_] : (n : ℕ) → Rel (Label n) ℓ
    _[_≤_] : (n : )  Rel (Label n)     isDecTotalOrder : (n : )  IsDecTotalOrder ≡._≡_ (n [_≤_])
  decTotalOrder : (n : )  DecTotalOrder     decTotalOrder n = record
      { Carrier = Label n
      ; _≈_ = ≡._≡_
      ; _≤_ = n [_≤_]
      ; isDecTotalOrder = isDecTotalOrder n
      }

  open DTOP using (<-strictTotalOrder) renaming (_<_ to <)
  _[_<_] : (n : )  Rel (Label n)   _[_<_] n =  < (decTotalOrder n)
  strictTotalOrder : (n : )  StrictTotalOrder     strictTotalOrder n = <-strictTotalOrder (decTotalOrder n)
  open IsCastable isCastable public

module Edge (HL : HypergraphLabel) where

  module HL = HypergraphLabel HL
  open HL using (Label; cast; cast-is-id; cast-trans)
  open VecBase using (Vec)

  record Edge (v : ) : Set where
    field
      {arity} :       label : Label arity
      ports : Vec (Fin v) arity

  open  using (_≡_)
  open VecCast using (_≈[_]_)

  record ≈-Edge {n : } (E E′ : Edge n) : Set where
    eta-equality
    module E = Edge E
    module E = Edge E′
    field
      ≡arity : E.arity  E′.arity
      ≡label : cast ≡arity E.label  E′.label
      ≡ports : E.ports ≈[ ≡arity ] E′.ports

  ≈-Edge-refl : {v : } {x : Edge v}  ≈-Edge x x
  ≈-Edge-refl {_} {x} = record
      { ≡arity = ≡.refl
      ; ≡label = HL.≈-reflexive ≡.refl
      ; ≡ports = VecCast.≈-reflexive ≡.refl
      }
    where
      open Edge x using (arity; label)
      open DecTotalOrder (HL.decTotalOrder arity) using (module Eq)

  ≈-Edge-sym : {v : } {x y : Edge v}  ≈-Edge x y  ≈-Edge y x
  ≈-Edge-sym {_} {x} {y} x≈y = record
      { ≡arity = ≡.sym ≡arity
      ; ≡label = HL.≈-sym ≡label
      ; ≡ports = VecCast.≈-sym ≡ports
      }
    where
      open ≈-Edge x≈y
      open DecTotalOrder (HL.decTotalOrder E.arity) using (module Eq)

  ≈-Edge-trans : {v : } {i j k : Edge v}  ≈-Edge i j  ≈-Edge j k  ≈-Edge i k
  ≈-Edge-trans {_} {i} {j} {k} i≈j j≈k = record
      { ≡arity = ≡.trans i≈j.≡arity j≈k.≡arity
      ; ≡label = HL.≈-trans i≈j.≡label j≈k.≡label
      ; ≡ports = VecCast.≈-trans i≈j.≡ports j≈k.≡ports
      }
    where
      module i≈j = ≈-Edge i≈j
      module j≈k = ≈-Edge j≈k

  open HL using (_[_<_])
  data <-Edge {v : } : Edge v  Edge v  Set where
    <-arity
        : {x y : Edge v}
         Edge.arity x < Edge.arity y
         <-Edge x y
    <-label
        : {x y : Edge v}
          (≡a : Edge.arity x  Edge.arity y)
         Edge.arity y [ cast ≡a (Edge.label x) < Edge.label y ]
         <-Edge x y

  <-Edge-irrefl : {v : } {x y : Edge v}  ≈-Edge x y  ¬ <-Edge x y
  <-Edge-irrefl record { ≡arity = ≡a } (<-arity n<m) = <-irrefl ≡a n<m
  <-Edge-irrefl record { ≡label = ≡l } (<-label _ (_ , x≉y)) = x≉y ≡l

  <-Edge-trans : {v : } {i j k : Edge v}  <-Edge i j  <-Edge j k  <-Edge i k
  <-Edge-trans (<-arity i<j) (<-arity j<k) = <-arity (<-trans i<j j<k)
  <-Edge-trans (<-arity i<j) (<-label ≡.refl j<k) = <-arity i<j
  <-Edge-trans (<-label ≡.refl i<j) (<-arity j<k) = <-arity j<k
  <-Edge-trans {_} {i} (<-label ≡.refl i<j) (<-label ≡.refl j<k)
      = <-label ≡.refl (<-label-trans i<j (<-respˡ-≈ (HL.≈-reflexive ≡.refl) j<k))
    where
      open DTOP (HL.decTotalOrder (Edge.arity i)) using (<-respˡ-≈) renaming (<-trans to <-label-trans)

  <-Edge-respˡ-≈ : {v : } {y : Edge v}  (λ x  <-Edge x y) Respects ≈-Edge
  <-Edge-respˡ-≈ ≈x (<-arity x₁<y) = <-arity (proj₂ <-resp₂-≡ ≡arity x₁<y)
    where
      open ≈-Edge ≈x using (≡arity)
  <-Edge-respˡ-≈ {_} {y} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x₁<y)
      = <-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x₁<y)
    where
      module y = Edge y
      open DTOP (HL.decTotalOrder y.arity) using (<-respˡ-≈)
  <-Edge-respʳ-≈ : {v : } {x : Edge v}  <-Edge x Respects ≈-Edge
  <-Edge-respʳ-≈ record { ≡arity = ≡a } (<-arity x<y₁) = <-arity (proj₁ <-resp₂-≡ ≡a x<y₁)
  <-Edge-respʳ-≈ {_} {x} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x<y₁)
      = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y₁)
    where
      module x = Edge x
      open DTOP (HL.decTotalOrder x.arity) using (<-respʳ-≈)

  open Tri
  open ≈-Edge
  tri : {v : }  Trichotomous (≈-Edge {v}) (<-Edge {v})
  tri x y with <-cmp x.arity y.arity
    where
      module x = Edge x
      module y = Edge y
  tri x y | tri< x<y x≢y y≮x = tri< (<-arity x<y) (λ x≡y  x≢y (≡arity x≡y)) ¬y<x
    where
      ¬y<x :  ¬ <-Edge y x
      ¬y<x (<-arity y<x) = y≮x y<x
      ¬y<x (<-label ≡a y<x) = x≢y (≡.sym ≡a)
  tri x y | tri≈ x≮y ≡.refl y≮x = compare-label
    where
      module x = Edge x
      module y = Edge y
      open StrictTotalOrder (HL.strictTotalOrder x.arity) using (compare)
      import Relation.Binary.Properties.DecTotalOrder
      open DTOP (HL.decTotalOrder x.arity) using (<-respˡ-≈)
      compare-label : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x)
      compare-label with compare x.label y.label
      ... | tri< x<y x≢y y≮x′ = tri<
              (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y))
              (λ x≡y  x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y)))
              ¬y<x
        where
          ¬y<x :  ¬ <-Edge y x
          ¬y<x (<-arity y<x) = y≮x y<x
          ¬y<x (<-label ≡a y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x)
      ... | tri≈ x≮y x≡y y≮x = compare-ports
        where
          compare-ports : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x)
          compare-ports = ?
      ... | tri> x≮y′ x≢y y<x = tri>
              ¬x<y
              (λ x≡y  x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y)))
              (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) y<x))
        where
          ¬x<y : ¬ <-Edge x y
          ¬x<y (<-arity x<y) = x≮y x<y
          ¬x<y (<-label ≡a x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y)
  tri x y | tri> x≮y x≢y y<x = tri> ¬x<y (λ x≡y  x≢y (≡arity x≡y)) (<-arity y<x)
    where
      ¬x<y :  ¬ <-Edge x y
      ¬x<y (<-arity x<y) = x≮y x<y
      ¬x<y (<-label ≡a x<y) = x≢y ≡a

  isStrictTotalOrder : {v : }  IsStrictTotalOrder (≈-Edge {v}) (<-Edge {v})
  isStrictTotalOrder = record
      { isStrictPartialOrder = record
          { isEquivalence = record
              { refl = ≈-Edge-refl
              ; sym = ≈-Edge-sym
              ; trans = ≈-Edge-trans
              }
          ; irrefl = <-Edge-irrefl
          ; trans = <-Edge-trans
          ; <-resp-≈ = <-Edge-respʳ-≈ , <-Edge-respˡ-≈
          }
      ; compare = tri
      }

module HypergraphList (HL : HypergraphLabel) where

  open import Data.List.Base using (List)
  open Edge HL using (Edge)

  record Hypergraph (v : ) : Set where
    field
      edges : List (Edge v)