blob: ae2ded9b87e9bb19b56d758e4e64d727c02f886d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
{-# OPTIONS --without-K --safe #-}
open import Level using (Level)
module Data.Monoid {c ℓ : Level} where
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
open import Category.Instance.Setoids.SymmetricMonoidal {c} {ℓ} using (Setoids-×)
open import Categories.Object.Monoid using (Monoid; Monoid⇒)
module Setoids-× = SymmetricMonoidalCategory Setoids-×
import Algebra.Bundles as Alg
open import Data.Setoid using (∣_∣)
open import Relation.Binary using (Setoid)
open import Function using (Func)
open import Data.Product using (curry′; _,_)
open Func
-- A monoid object in the (monoidal) category of setoids is just a monoid
toMonoid : Monoid Setoids-×.monoidal → Alg.Monoid c ℓ
toMonoid M = record
{ Carrier = Carrier
; _≈_ = _≈_
; _∙_ = curry′ (to μ)
; ε = to η _
; isMonoid = record
{ isSemigroup = record
{ isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = curry′ (cong μ)
}
; assoc = λ x y z → assoc {(x , y) , z}
}
; identity = (λ x → sym (identityˡ {_ , x}) ) , λ x → sym (identityʳ {x , _})
}
}
where
open Monoid M renaming (Carrier to A)
open Setoid A
-- A morphism of monoids in the (monoidal) category of setoids is a monoid homomorphism
module _ (M N : Monoid Setoids-×.monoidal) where
module M = Alg.Monoid (toMonoid M)
module N = Alg.Monoid (toMonoid N)
open import Data.Product using (Σ; _,_)
open import Function using (_⟶ₛ_; _⟨$⟩_)
open import Algebra.Morphism using (IsMonoidHomomorphism)
open Monoid⇒
toMonoid⇒
: Monoid⇒ Setoids-×.monoidal M N
→ Σ (M.setoid ⟶ₛ N.setoid) (λ f
→ IsMonoidHomomorphism M.rawMonoid N.rawMonoid (to f))
toMonoid⇒ f = arr f , record
{ isMagmaHomomorphism = record
{ isRelHomomorphism = record
{ cong = cong (arr f)
}
; homo = λ x y → preserves-μ f {x , y}
}
; ε-homo = preserves-η f
}
|