aboutsummaryrefslogtreecommitdiff
path: root/Data/Opaque/List.agda
blob: a8e536fe2c736211d2d746ce74a1c44365e8e88c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
{-# OPTIONS --without-K --safe #-}

module Data.Opaque.List where

import Data.List as L
import Function.Construct.Constant as Const

open import Level using (Level; _⊔_)
open import Data.List.Relation.Binary.Pointwise as PW using (++⁺; map⁺)
open import Data.Product using (uncurry′)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Unit.Polymorphic using ()
open import Function using (_⟶ₛ_; Func)
open import Relation.Binary using (Setoid)

open Func

private

  variable
    a c  : Level
    A B : Set a
    Aₛ Bₛ : Setoid c   ⊤ₛ : Setoid c   ⊤ₛ = record { Carrier =  ; _≈_ = λ _ _   }

opaque

  List : Set a  Set a
  List = L.List

  [] : List A
  [] = L.[]

  _∷_ : A  List A  List A
  _∷_ = L._∷_

  map : (A  B)  List A  List B
  map = L.map

  _++_ : List A  List A  List A
  _++_ = L._++_

  Listₛ : Setoid c   Setoid c (c  )
  Listₛ = PW.setoid

  []ₛ : ⊤ₛ {c} {c  } ⟶ₛ Listₛ {c} {} Aₛ
  []ₛ = Const.function ⊤ₛ (Listₛ _) []

  ∷ₛ : Aₛ ×ₛ Listₛ Aₛ ⟶ₛ Listₛ Aₛ
  ∷ₛ .to = uncurry′ _∷_
  ∷ₛ .cong = uncurry′ PW._∷_

  mapₛ : (Aₛ ⟶ₛ Bₛ)  Listₛ Aₛ ⟶ₛ Listₛ Bₛ
  mapₛ f .to = map (to f)
  mapₛ f .cong xs≈ys = map⁺ (to f) (to f) (PW.map (cong f) xs≈ys)

  ++ₛ : Listₛ Aₛ ×ₛ Listₛ Aₛ ⟶ₛ Listₛ Aₛ
  ++ₛ .to = uncurry′ _++_
  ++ₛ .cong = uncurry′ ++⁺