aboutsummaryrefslogtreecommitdiff
path: root/Data/Opaque/Multiset.agda
blob: 2ba0a0ec3e74a71654b300b7ea72e4edb4a3206c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
{-# OPTIONS --without-K --safe #-}
{-# OPTIONS --hidden-argument-puns #-}

module Data.Opaque.Multiset where

import Data.List as L

open import Data.List.Relation.Binary.Permutation.Setoid as  using (↭-setoid; prep)
open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺; ++⁺; ++-comm)
open import Data.Product using (_,_)
open import Data.Product using (uncurry′)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Setoid.Unit using (⊤ₛ)
open import Function using (_⟶ₛ_; Func; _⟨$⟩_)
open import Function.Construct.Constant using () renaming (function to Const)
open import Level using (Level; _⊔_)
open import Relation.Binary using (Setoid)

open Func

private

  variable
    a c  : Level
    A B : Set a
    Aₛ Bₛ : Setoid c ℓ

opaque

  Multiset : Set a  Set a
  Multiset = L.List

  [] : Multiset A
  [] = L.[]

  _∷_ : A  Multiset A  Multiset A
  _∷_ = L._∷_

  map : (A  B)  Multiset A  Multiset B
  map = L.map

  _++_ : Multiset A  Multiset A  Multiset A
  _++_ = L._++_

  Multisetₛ : Setoid c   Setoid c (c  )
  Multisetₛ = ↭-setoid

  []ₛ : ⊤ₛ {c} {c  } ⟶ₛ Multisetₛ {c} {} Aₛ
  []ₛ {Aₛ} = Const ⊤ₛ (Multisetₛ Aₛ) []

  ∷ₛ : Aₛ ×ₛ Multisetₛ Aₛ ⟶ₛ Multisetₛ Aₛ
  ∷ₛ .to = uncurry′ _∷_
  ∷ₛ .cong = uncurry′ prep

  mapₛ : (Aₛ ⟶ₛ Bₛ)  Multisetₛ Aₛ ⟶ₛ Multisetₛ Bₛ
  mapₛ f .to = map (to f)
  mapₛ {Aₛ} {Bₛ} f .cong xs≈ys = map⁺ Aₛ Bₛ (cong f) xs≈ys

  ++ₛ : Multisetₛ Aₛ ×ₛ Multisetₛ Aₛ ⟶ₛ Multisetₛ Aₛ
  ++ₛ .to = uncurry′ _++_
  ++ₛ {Aₛ} .cong = uncurry′ (++⁺ Aₛ)

  ++ₛ-comm
      : (open Setoid (Multisetₛ Aₛ))
       (xs ys : Carrier)
       ++ₛ ⟨$⟩ (xs , ys)  ++ₛ ⟨$⟩ (ys , xs)
  ++ₛ-comm {Aₛ} xs ys = ++-comm Aₛ xs ys