aboutsummaryrefslogtreecommitdiff
path: root/Data/Permutation/Sort.agda
blob: 977443a7cb0fd0a5bf93d273c02713c79be0372a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{-# OPTIONS --without-K --safe #-}

open import Relation.Binary.Bundles using (DecTotalOrder)

module Data.Permutation.Sort {ℓ₁ ℓ₂ ℓ₃} (dto : DecTotalOrder ℓ₁ ℓ₂ ℓ₃) where

open DecTotalOrder dto
  using
    ( _≈_ ; module Eq
    ; totalOrder
    ; _≤_ ; _≤?_
    ; ≤-respˡ-≈ ; ≤-respʳ-≈
    ; antisym
    )
  renaming (Carrier to A; trans to ≤-trans; reflexive to ≤-reflexive)

open import Data.Fin.Base using (Fin)
open import Data.List.Base using (List; _++_; [_])
open import Data.List.Membership.Setoid Eq.setoid using (_∈_)
open import Data.List.Relation.Binary.Pointwise using (module Pointwise)
open import Data.List.Relation.Binary.Equality.Setoid Eq.setoid using (_≋_; ≋-refl; ≋-sym; ≋-trans)
open import Data.List.Relation.Unary.Linked using (Linked)
open import Data.List.Relation.Unary.Sorted.TotalOrder totalOrder using (Sorted)
open import Data.List.Relation.Binary.Permutation.Propositional using (_↭_; ↭-trans; ↭-sym)
open import Data.List.Relation.Binary.Permutation.Propositional.Properties using (↭-length)
open import Data.List.Relation.Unary.Any using (Any)
open import Data.List.Sort dto using (sort; sort-↭; sort-↗)
open import Relation.Nullary.Decidable.Core using (yes; no)
open Fin
open _↭_
open Any
open List
open Linked
open Pointwise

insert : List A  A  List A
insert [] x = [ x ]
insert (x₀  xs) x with x ≤? x₀
... | yes _ = x  x₀  xs
... | no _ = x₀  insert xs x

insert-resp-≋ : {xs ys : List A} (v : A)  xs  ys  insert xs v  insert ys v
insert-resp-≋ _ [] = ≋-refl
insert-resp-≋ {x  xs} {y  ys} v (x≈y  xs≋ys)
  with v ≤? x | v ≤? y
... | yes v≤x | yes v≤y = Eq.refl  x≈y  xs≋ys
... | yes v≤x | no v≰y with ()  v≰y (≤-respʳ-≈ x≈y v≤x)
... | no v≰x | yes v≤y with ()  v≰x (≤-respʳ-≈ (Eq.sym x≈y) v≤y)
... | no v≰x | no v≰y = x≈y  insert-resp-≋ v xs≋ys

remove : {x : A} (xs : List A)  x  xs  List A
remove (_  xs) (here _) = xs
remove (x  xs) (there elem) = x  remove xs elem

remove-sorted : {x : A} {xs : List A}  Sorted xs  (x∈xs : x  xs)  Sorted (remove xs x∈xs)
remove-sorted [-] (here x≡x₀) = []
remove-sorted (x₀≤x₁  s-xs) (here px) = s-xs
remove-sorted (x₀≤x₁  [-]) (there (here px)) = [-]
remove-sorted (x₀≤x₁  x₁≤x₂  s-xs) (there (here px)) = ≤-trans x₀≤x₁ x₁≤x₂  s-xs
remove-sorted (x₀≤x₁  x₁≤x₂  s-xs) (there (there x∈xs)) = x₀≤x₁  remove-sorted (x₁≤x₂  s-xs) (there x∈xs)

head : {xs : List A} {x : A}  .(x  xs)  A
head {x  _} _ = x

tail : {xs : List A} {x : A}  .(x  xs)  List A
tail {_  xs} _ = xs

head-≤ : {xs : List A}
      {x : A}
     Sorted xs
     (x∈xs : x  xs)
     head x∈xs  x
head-≤ {x  []} [-] (here px) = ≤-reflexive (Eq.sym px)
head-≤ {x₀  x₁  xs} (x₀≤x₁  s-xs) (here px) = ≤-reflexive (Eq.sym px)
head-≤ {x₀  x₁  xs} (x₀≤x₁  s-xs) (there x∈xs) = ≤-trans x₀≤x₁ (head-≤ s-xs x∈xs)

remove-head
    : {xs : List A}
      {x : A}
     Sorted xs
     (x∈xs : x  xs)
     x  head x∈xs
     remove xs x∈xs  tail x∈xs
remove-head _ (here _) _ = ≋-refl
remove-head {x₀  x₁  xs} {x} (x₀≤x₁  s-xs) (there x∈xs) x≈x₀ =
    x₀≈x₁  remove-head s-xs x∈xs x≈x₁
  where
    x₀≈x₁ : x₀  x₁
    x₀≈x₁ = antisym x₀≤x₁ (≤-respʳ-≈ x≈x₀ (head-≤ s-xs x∈xs))
    x≈x₁ : x  x₁
    x≈x₁ = Eq.trans x≈x₀ x₀≈x₁

insert-remove
    : {xs : List A}
      {x : A}
     (s-xs : Sorted xs)
     (x∈xs : x  xs)
     insert (remove xs x∈xs) x  xs
insert-remove [-] (here px) = px  []
insert-remove {x₀  x₁  xs} {x} (x₀≤x₁  s-xs) (here px) with x ≤? x₁
... | yes x≤x₁ = px  ≋-refl
... | no x≰x₁ with ()  x≰x₁ (≤-respˡ-≈ (Eq.sym px) x₀≤x₁)
insert-remove {x₀  x₁  xs} {x} (x₀≤x₁  s-xs) (there x∈xs) with x ≤? x₀
... | yes x≤x₀ =
          antisym x≤x₀ (≤-trans x₀≤x₁ x₁≤x)           antisym x₀≤x₁ (≤-trans x₁≤x x≤x₀)           remove-head s-xs x∈xs (antisym (≤-trans x≤x₀ x₀≤x₁) (head-≤ s-xs x∈xs))
        where
          x₁≤x : x₁  x
          x₁≤x = head-≤ s-xs x∈xs
... | no x≰x₀ = Eq.refl  insert-remove s-xs x∈xs

apply : {xs ys : List A} {x : A}  xs  ys  x  xs  x  ys
apply refl x-in-xs = x-in-xs
apply (prep x xs↭ys) (here px) = here px
apply (prep x xs↭ys) (there x-in-xs) = there (apply xs↭ys x-in-xs)
apply (swap x y xs↭ys) (here px) = there (here px)
apply (swap x y xs↭ys) (there (here px)) = here px
apply (swap x y xs↭ys) (there (there x-in-xs)) = there (there (apply xs↭ys x-in-xs))
apply (trans xs↭ys ys↭zs) x-in-xs = apply ys↭zs (apply xs↭ys x-in-xs)

↭-remove
    : {xs ys : List A}
      {x : A}
     (xs↭ys : xs  ys)
     (x∈xs : x  xs)
     let x∈ys = apply xs↭ys x∈xs in
      remove xs x∈xs  remove ys x∈ys
↭-remove refl x∈xs = refl
↭-remove (prep x xs↭ys) (here px) = xs↭ys
↭-remove (prep x xs↭ys) (there x∈xs) = prep x (↭-remove xs↭ys x∈xs)
↭-remove (swap x y xs↭ys) (here px) = prep y xs↭ys
↭-remove (swap x y xs↭ys) (there (here px)) = prep x xs↭ys
↭-remove (swap x y xs↭ys) (there (there x∈xs)) = swap x y (↭-remove xs↭ys x∈xs)
↭-remove (trans xs↭ys ys↭zs) x∈xs = trans (↭-remove xs↭ys x∈xs) (↭-remove ys↭zs (apply xs↭ys x∈xs))

sorted-unique
    : {xs ys : List A}
     xs  ys
     Sorted xs
     Sorted ys
     xs  ys
sorted-unique {[]} {ys} xs↭ys s-xs s-ys with .(↭-length xs↭ys)
sorted-unique {[]} {[]} xs↭ys s-xs s-ys | _ = []
sorted-unique xs@{x  xs′} {ys} xs↭ys s-xs s-ys = ≋-trans ≋xs (≋-trans xs≋ys″ ≋ys)
  where
    x∈xs : x  xs
    x∈xs = here Eq.refl
    x∈ys : x  ys
    x∈ys = apply xs↭ys x∈xs
    s-xs′ : Sorted (remove xs x∈xs)
    s-xs′ = remove-sorted s-xs x∈xs
    s-ys′ : Sorted (remove ys x∈ys)
    s-ys′ = remove-sorted s-ys x∈ys
    xs↭ys′ : remove xs x∈xs  remove ys x∈ys
    xs↭ys′ = ↭-remove xs↭ys x∈xs
    xs≋ys′ : remove xs x∈xs  remove ys x∈ys
    xs≋ys′ = sorted-unique {xs′} xs↭ys′ s-xs′ s-ys′
    xs≋ys″ : insert (remove xs x∈xs) x  insert (remove ys x∈ys) x
    xs≋ys″ = insert-resp-≋ x xs≋ys′
    ≋xs : xs  insert (remove xs x∈xs) x
    ≋xs = ≋-sym (insert-remove s-xs x∈xs)
    ≋ys : insert (remove ys x∈ys) x  ys
    ≋ys = insert-remove s-ys x∈ys

sorted-≋
    : {xs ys : List A}
     xs  ys
     sort xs  sort ys
sorted-≋ {xs} {ys} xs↭ys =
    sorted-unique
      (↭-trans
        (sort-↭ xs)
        (↭-trans xs↭ys (↭-sym (sort-↭ ys))))
      (sort-↗ xs)
      (sort-↗ ys)