aboutsummaryrefslogtreecommitdiff
path: root/Data/System.agda
blob: 5d5e48466c21ae3fda5e5a579b2652214a1a409b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{-# OPTIONS --without-K --safe #-}

open import Level using (Level; 0ℓ; suc)

module Data.System { : Level} where

import Relation.Binary.Properties.Preorder as PreorderProperties
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning

open import Categories.Category using (Category)
open import Categories.Category.Instance.SingletonSet using () renaming (SingletonSetoid to ⊤ₛ)
open import Data.Circuit.Value using (Monoid)
open import Data.Nat using ()
open import Data.Setoid using (_⇒ₛ_; ∣_∣)
open import Data.System.Values Monoid using (Values; _≋_; module ≋; <ε>)
open import Function using (Func; _⟨$⟩_; flip)
open import Function.Construct.Constant using () renaming (function to Const)
open import Function.Construct.Identity using () renaming (function to Id)
open import Function.Construct.Setoid using (_∙_)
open import Level using (Level; 0ℓ; suc)
open import Relation.Binary as Rel using (Reflexive; Transitive; Preorder; Setoid; Rel)
open import Relation.Binary.PropositionalEquality as  using (_≡_)

open Func

module _ (n : ) where

  record System : Set₁ where

    field
      S : Setoid 0 0      fₛ :  Values n ⇒ₛ S ⇒ₛ S       fₒ :  S ⇒ₛ Values n     fₛ′ :  Values n    S    S     fₛ′ i = to (to fₛ i)

    fₒ′ :  S    Values n     fₒ′ = to fₒ

    module S = Setoid S

  open System

  discrete : System
  discrete .S = ⊤ₛ
  discrete .fₛ = Const (Values n) (⊤ₛ ⇒ₛ ⊤ₛ) (Id ⊤ₛ)
  discrete .fₒ = Const ⊤ₛ (Values n) <ε>

module _ {n : } where

  record _≤_ (a b : System n) : Set  where

    private
      module A = System a
      module B = System b

    open B using (S)

    field
      ⇒S :  A.S ⇒ₛ B.S       ≗-fₛ : (i :  Values n ) (s :  A.S )  ⇒S ⟨$⟩ (A.fₛ′ i s) S.≈ B.fₛ′ i (⇒S ⟨$⟩ s)
      ≗-fₒ : (s :  A.S )  A.fₒ′ s  B.fₒ′ (⇒S ⟨$⟩ s)

  infix 4 _≤_

open System

private

  module _ {n : } where

    open _≤_

    ≤-refl : Reflexive (_≤_ {n})
    ⇒S ≤-refl = Id _
    ≗-fₛ (≤-refl {x}) _ _ = S.refl x
    ≗-fₒ ≤-refl _ = ≋.refl

    ≡⇒≤ : _≡_ Rel.⇒ _≤_
    ≡⇒≤ ≡.refl = ≤-refl

    ≤-trans : Transitive _≤_
    ⇒S (≤-trans a b) = ⇒S b  ⇒S a
    ≗-fₛ (≤-trans {x} {y} {z} a b) i s = let open ≈-Reasoning (S z) in begin
        ⇒S b ⟨$⟩ (⇒S a ⟨$⟩ (fₛ′ x i s)) ≈⟨ cong (⇒S b) (≗-fₛ a i s)         ⇒S b ⟨$⟩ (fₛ′ y i (⇒S a ⟨$⟩ s)) ≈⟨ ≗-fₛ b i (⇒S a ⟨$⟩ s)         fₛ′ z i (⇒S b ⟨$⟩ (⇒S a ⟨$⟩ s))     ≗-fₒ (≤-trans {x} {y} {z} a b) s = let open ≈-Reasoning (Values n) in begin
        fₒ′ x s                       ≈⟨ ≗-fₒ a s         fₒ′ y (⇒S a ⟨$⟩ s)            ≈⟨ ≗-fₒ b (⇒S a ⟨$⟩ s)         fₒ′ z (⇒S b ⟨$⟩ (⇒S a ⟨$⟩ s))     variable
      A B C : System n

    _≈_ : Rel (A  B) 0    _≈_ {A} {B} ≤₁ ≤₂ = ⇒S ≤₁ A⇒B.≈ ⇒S ≤₂
      where
        module A⇒B = Setoid (S A ⇒ₛ S B)

    open Rel.IsEquivalence

    ≈-isEquiv : Rel.IsEquivalence (_≈_ {A} {B})
    ≈-isEquiv {B = B} .refl = S.refl B
    ≈-isEquiv {B = B} .sym a = S.sym B a
    ≈-isEquiv {B = B} .trans a b = S.trans B a b

    ≤-resp-≈ : {f h : B  C} {g i : A  B}  f  h  g  i  ≤-trans g f  ≤-trans i h
    ≤-resp-≈ {_} {C} {_} {f} {h} {g} {i} f≈h g≈i {x} = begin
        ⇒S f ⟨$⟩ (⇒S g ⟨$⟩ x) ≈⟨ f≈h         ⇒S h ⟨$⟩ (⇒S g ⟨$⟩ x) ≈⟨ cong (⇒S h) g≈i         ⇒S h ⟨$⟩ (⇒S i ⟨$⟩ x)       where
        open ≈-Reasoning (System.S C)

System-≤ :   Preorder (suc 0) (suc 0) ℓ
System-≤ n = record
    { _≲_ = _≤_ {n}
    ; isPreorder = record
        { isEquivalence = ≡.isEquivalence
        ; reflexive = ≡⇒≤
        ; trans = ≤-trans
        }
    }

Systemₛ :   Setoid (suc 0) ℓ
Systemₛ n = PreorderProperties.InducedEquivalence (System-≤ n)

Systems :   Category (suc 0)  0ℓ
Systems n = record
    { Obj = System n
    ; _⇒_ = _≤_
    ; _≈_ = _≈_
    ; id = ≤-refl
    ; _∘_ = flip ≤-trans
    ; assoc = λ {D = D}  S.refl D
    ; sym-assoc = λ {D = D}  S.refl D
    ; identityˡ = λ {B = B}  S.refl B
    ; identityʳ = λ {B = B}  S.refl B
    ; identity² = λ {A = A}  S.refl A
    ; equiv = ≈-isEquiv
    ; ∘-resp-≈ = λ {f = f} {h} {g} {i}  ≤-resp-≈ {f = f} {h} {g} {i}
    }