1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
{-# OPTIONS --without-K --safe #-}
open import Algebra.Bundles using (CommutativeMonoid)
open import Level using (0ℓ)
module Data.System.Values (A : CommutativeMonoid 0ℓ 0ℓ) where
open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×)
import Algebra.Properties.CommutativeMonoid.Sum A as Sum
import Data.Vec.Functional.Relation.Binary.Equality.Setoid as Pointwise
import Object.Monoid.Commutative Setoids-×.symmetric as Obj
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
open import Data.Bool using (Bool; if_then_else_)
open import Data.Bool.Properties using (if-cong)
open import Data.Monoid using (module FromMonoid)
open import Data.CMonoid using (fromCMonoid)
open import Data.Fin using (Fin; splitAt; _↑ˡ_; _↑ʳ_; punchIn; punchOut)
open import Data.Fin using (_≟_)
open import Data.Fin.Permutation using (Permutation; Permutation′; _⟨$⟩ʳ_; _⟨$⟩ˡ_; id; flip; inverseˡ; inverseʳ; punchIn-permute; insert; remove)
open import Data.Fin.Preimage using (preimage; preimage-cong₁; preimage-cong₂)
open import Data.Fin.Properties using (punchIn-punchOut)
open import Data.Nat using (ℕ; _+_)
open import Data.Product using (_,_; Σ-syntax)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Setoid using (∣_∣)
open import Data.Subset.Functional using (Subset; ⁅_⁆; ⁅⁆∘ρ)
open import Data.Sum using (inj₁; inj₂)
open import Data.Vec.Functional as Vec using (Vector; zipWith; replicate)
open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_)
open import Level using (0ℓ)
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning)
open import Relation.Nullary.Decidable using (yes; no)
open Bool
open CommutativeMonoid A renaming (Carrier to Value; setoid to Valueₛ)
open Fin
open Func
open Pointwise Valueₛ using (≋-setoid; ≋-isEquivalence)
open ℕ
opaque
Values : ℕ → Setoid 0ℓ 0ℓ
Values = ≋-setoid
_when_ : Value → Bool → Value
x when b = if b then x else ε
-- when preserves setoid equivalence
when-cong
: {x y : Value}
→ x ≈ y
→ (b : Bool)
→ x when b ≈ y when b
when-cong _ false = refl
when-cong x≈y true = x≈y
module _ {n : ℕ} where
opaque
unfolding Values
_⊕_ : ∣ Values n ∣ → ∣ Values n ∣ → ∣ Values n ∣
xs ⊕ ys = zipWith _∙_ xs ys
<ε> : ∣ Values n ∣
<ε> = replicate n ε
mask : Subset n → ∣ Values n ∣ → ∣ Values n ∣
mask S v i = v i when S i
sum : ∣ Values n ∣ → Value
sum = Sum.sum
merge : ∣ Values n ∣ → Subset n → Value
merge v S = sum (mask S v)
-- mask preserves setoid equivalence
maskₛ : Subset n → Values n ⟶ₛ Values n
maskₛ S .to = mask S
maskₛ S .cong v≋w i = when-cong (v≋w i) (S i)
-- sum preserves setoid equivalence
sumₛ : Values n ⟶ₛ Valueₛ
sumₛ .to = Sum.sum
sumₛ .cong = Sum.sum-cong-≋
head : ∣ Values (suc n) ∣ → Value
head xs = xs zero
tail : ∣ Values (suc n) ∣ → ∣ Values n ∣
tail xs = xs ∘ suc
lookup : ∣ Values n ∣ → Fin n → Value
lookup v i = v i
module ≋ = Setoid (Values n)
_≋_ : Rel ∣ Values n ∣ 0ℓ
_≋_ = ≋._≈_
infix 4 _≋_
opaque
unfolding merge
-- merge preserves setoid equivalence
merge-cong
: (S : Subset n)
→ {xs ys : ∣ Values n ∣}
→ xs ≋ ys
→ merge xs S ≈ merge ys S
merge-cong S {xs} {ys} xs≋ys = cong sumₛ (cong (maskₛ S) xs≋ys)
mask-cong₁
: {S₁ S₂ : Subset n}
→ S₁ ≗ S₂
→ (xs : ∣ Values n ∣)
→ mask S₁ xs ≋ mask S₂ xs
mask-cong₁ S₁≋S₂ _ i = reflexive (if-cong (S₁≋S₂ i))
merge-cong₂
: (xs : ∣ Values n ∣)
→ {S₁ S₂ : Subset n}
→ S₁ ≗ S₂
→ merge xs S₁ ≈ merge xs S₂
merge-cong₂ xs S₁≋S₂ = cong sumₛ (mask-cong₁ S₁≋S₂ xs)
module _ where
open Setoid
opaque
unfolding Values
≋-isEquiv : ∀ n → IsEquivalence (_≈_ (Values n))
≋-isEquiv = ≋-isEquivalence
module _ {n : ℕ} where
opaque
unfolding _⊕_
⊕-cong : {x y u v : ≋.Carrier {n}} → x ≋ y → u ≋ v → x ⊕ u ≋ y ⊕ v
⊕-cong x≋y u≋v i = ∙-cong (x≋y i) (u≋v i)
⊕-assoc : (x y z : ≋.Carrier {n}) → (x ⊕ y) ⊕ z ≋ x ⊕ (y ⊕ z)
⊕-assoc x y z i = assoc (x i) (y i) (z i)
⊕-identityˡ : (x : ≋.Carrier {n}) → <ε> ⊕ x ≋ x
⊕-identityˡ x i = identityˡ (x i)
⊕-identityʳ : (x : ≋.Carrier {n}) → x ⊕ <ε> ≋ x
⊕-identityʳ x i = identityʳ (x i)
⊕-comm : (x y : ≋.Carrier {n}) → x ⊕ y ≋ y ⊕ x
⊕-comm x y i = comm (x i) (y i)
module Algebra where
open CommutativeMonoid
Valuesₘ : ℕ → CommutativeMonoid 0ℓ 0ℓ
Valuesₘ n .Carrier = ∣ Values n ∣
Valuesₘ n ._≈_ = _≋_
Valuesₘ n ._∙_ = _⊕_
Valuesₘ n .ε = <ε>
Valuesₘ n .isCommutativeMonoid = record
{ isMonoid = record
{ isSemigroup = record
{ isMagma = record
{ isEquivalence = ≋-isEquiv n
; ∙-cong = ⊕-cong
}
; assoc = ⊕-assoc
}
; identity = ⊕-identityˡ , ⊕-identityʳ
}
; comm = ⊕-comm
}
module Object where
opaque
unfolding FromMonoid.μ
Valuesₘ : ℕ → Obj.CommutativeMonoid
Valuesₘ n = fromCMonoid (Algebra.Valuesₘ n)
opaque
unfolding Values
[] : ∣ Values 0 ∣
[] = Vec.[]
[]-unique : (xs ys : ∣ Values 0 ∣) → xs ≋ ys
[]-unique xs ys ()
module _ {n m : ℕ} where
opaque
unfolding Values
_++_ : ∣ Values n ∣ → ∣ Values m ∣ → ∣ Values (n + m) ∣
_++_ = Vec._++_
infixr 5 _++_
++-cong
: (xs xs′ : ∣ Values n ∣)
{ys ys′ : ∣ Values m ∣}
→ xs ≋ xs′
→ ys ≋ ys′
→ xs ++ ys ≋ xs′ ++ ys′
++-cong xs xs′ xs≋xs′ ys≋ys′ i with splitAt n i
... | inj₁ i = xs≋xs′ i
... | inj₂ i = ys≋ys′ i
splitₛ : Values (n + m) ⟶ₛ Values n ×ₛ Values m
to splitₛ v = v ∘ (_↑ˡ m) , v ∘ (n ↑ʳ_)
cong splitₛ v₁≋v₂ = v₁≋v₂ ∘ (_↑ˡ m) , v₁≋v₂ ∘ (n ↑ʳ_)
++ₛ : Values n ×ₛ Values m ⟶ₛ Values (n + m)
to ++ₛ (xs , ys) = xs ++ ys
cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys
opaque
unfolding merge
mask-⊕
: {n : ℕ}
(xs ys : ∣ Values n ∣)
(S : Subset n)
→ mask S (xs ⊕ ys) ≋ mask S xs ⊕ mask S ys
mask-⊕ xs ys S i with S i
... | false = sym (identityˡ ε)
... | true = refl
sum-⊕
: {n : ℕ}
→ (xs ys : ∣ Values n ∣)
→ sum (xs ⊕ ys) ≈ sum xs ∙ sum ys
sum-⊕ {zero} xs ys = sym (identityˡ ε)
sum-⊕ {suc n} xs ys = begin
(head xs ∙ head ys) ∙ sum (tail xs ⊕ tail ys) ≈⟨ ∙-congˡ (sum-⊕ (tail xs) (tail ys)) ⟩
(head xs ∙ head ys) ∙ (sum (tail xs) ∙ sum (tail ys)) ≈⟨ assoc (head xs) (head ys) _ ⟩
head xs ∙ (head ys ∙ (sum (tail xs) ∙ sum (tail ys))) ≈⟨ ∙-congˡ (assoc (head ys) (sum (tail xs)) _) ⟨
head xs ∙ ((head ys ∙ sum (tail xs)) ∙ sum (tail ys)) ≈⟨ ∙-congˡ (∙-congʳ (comm (head ys) (sum (tail xs)))) ⟩
head xs ∙ ((sum (tail xs) ∙ head ys) ∙ sum (tail ys)) ≈⟨ ∙-congˡ (assoc (sum (tail xs)) (head ys) _) ⟩
head xs ∙ (sum (tail xs) ∙ (head ys ∙ sum (tail ys))) ≈⟨ assoc (head xs) (sum (tail xs)) _ ⟨
(head xs ∙ sum (tail xs)) ∙ (head ys ∙ sum (tail ys)) ∎
where
open ≈-Reasoning Valueₛ
merge-⊕
: {n : ℕ}
(xs ys : ∣ Values n ∣)
(S : Subset n)
→ merge (xs ⊕ ys) S ≈ merge xs S ∙ merge ys S
merge-⊕ {n} xs ys S = begin
sum (mask S (xs ⊕ ys)) ≈⟨ cong sumₛ (mask-⊕ xs ys S) ⟩
sum (mask S xs ⊕ mask S ys) ≈⟨ sum-⊕ (mask S xs) (mask S ys) ⟩
sum (mask S xs) ∙ sum (mask S ys) ∎
where
open ≈-Reasoning Valueₛ
mask-<ε> : {n : ℕ} (S : Subset n) → mask {n} S <ε> ≋ <ε>
mask-<ε> S i with S i
... | false = refl
... | true = refl
sum-<ε> : (n : ℕ) → sum {n} <ε> ≈ ε
sum-<ε> zero = refl
sum-<ε> (suc n) = trans (identityˡ (sum {n} <ε>)) (sum-<ε> n)
merge-<ε> : {n : ℕ} (S : Subset n) → merge {n} <ε> S ≈ ε
merge-<ε> {n} S = begin
sum (mask S <ε>) ≈⟨ cong sumₛ (mask-<ε> S) ⟩
sum {n} <ε> ≈⟨ sum-<ε> n ⟩
ε ∎
where
open ≈-Reasoning Valueₛ
merge-⁅⁆
: {n : ℕ}
(xs : ∣ Values n ∣)
(i : Fin n)
→ merge xs ⁅ i ⁆ ≈ lookup xs i
merge-⁅⁆ {suc n} xs zero = trans (∙-congˡ (sum-<ε> n)) (identityʳ (head xs))
merge-⁅⁆ {suc n} xs (suc i) = begin
ε ∙ merge (tail xs) ⁅ i ⁆ ≈⟨ identityˡ (sum (mask ⁅ i ⁆ (tail xs))) ⟩
merge (tail xs) ⁅ i ⁆ ≈⟨ merge-⁅⁆ (tail xs) i ⟩
tail xs i ∎
where
open ≈-Reasoning Valueₛ
opaque
unfolding Values
push : {A B : ℕ} → ∣ Values A ∣ → (Fin A → Fin B) → ∣ Values B ∣
push v f = merge v ∘ preimage f ∘ ⁅_⁆
pull : {A B : ℕ} → ∣ Values B ∣ → (Fin A → Fin B) → ∣ Values A ∣
pull v f = v ∘ f
insert-f0-0
: {A B : ℕ}
(f : Fin (suc A) → Fin (suc B))
→ Σ[ ρ ∈ Permutation′ (suc B) ] (ρ ⟨$⟩ʳ (f zero) ≡ zero)
insert-f0-0 {A} {B} f = ρ , ρf0≡0
where
ρ : Permutation′ (suc B)
ρ = insert (f zero) zero id
ρf0≡0 : ρ ⟨$⟩ʳ f zero ≡ zero
ρf0≡0 with f zero ≟ f zero
... | yes _ = ≡.refl
... | no f0≢f0 with () ← f0≢f0 ≡.refl
opaque
unfolding push
push-cong
: {A B : ℕ}
→ (v : ∣ Values A ∣)
{f g : Fin A → Fin B}
→ f ≗ g
→ push v f ≋ push v g
push-cong v f≋g i = merge-cong₂ v (≡.cong ⁅ i ⁆ ∘ f≋g)
opaque
unfolding Values
removeAt : {n : ℕ} → ∣ Values (suc n) ∣ → Fin (suc n) → ∣ Values n ∣
removeAt v i = Vec.removeAt v i
opaque
unfolding merge removeAt
merge-removeAt
: {A : ℕ}
(k : Fin (suc A))
(v : ∣ Values (suc A) ∣)
(S : Subset (suc A))
→ merge v S ≈ lookup v k when S k ∙ merge (removeAt v k) (Vec.removeAt S k)
merge-removeAt {A} zero v S = refl
merge-removeAt {suc A} (suc k) v S = begin
v0? ∙ merge (tail v) (Vec.tail S) ≈⟨ ∙-congˡ (merge-removeAt k (tail v) (Vec.tail S)) ⟩
v0? ∙ (vk? ∙ merge (tail v-) (Vec.tail S-)) ≈⟨ assoc v0? vk? _ ⟨
(v0? ∙ vk?) ∙ merge (tail v-) (Vec.tail S-) ≈⟨ ∙-congʳ (comm v0? vk?) ⟩
(vk? ∙ v0?) ∙ merge (tail v-) (Vec.tail S-) ≈⟨ assoc vk? v0? _ ⟩
vk? ∙ (v0? ∙ merge (tail v-) (Vec.tail S-)) ≡⟨⟩
vk? ∙ merge v- S- ∎
where
open ≈-Reasoning Valueₛ
v0? vk? : Value
v0? = head v when Vec.head S
vk? = tail v k when Vec.tail S k
v- : Vector Value (suc A)
v- = removeAt v (suc k)
S- : Subset (suc A)
S- = Vec.removeAt S (suc k)
opaque
unfolding merge pull removeAt
merge-preimage-ρ
: {A B : ℕ}
→ (ρ : Permutation A B)
→ (v : ∣ Values A ∣)
(S : Subset B)
→ merge v (preimage (ρ ⟨$⟩ʳ_) S) ≈ merge (pull v (ρ ⟨$⟩ˡ_)) S
merge-preimage-ρ {zero} {zero} ρ v S = refl
merge-preimage-ρ {zero} {suc B} ρ v S with () ← ρ ⟨$⟩ˡ zero
merge-preimage-ρ {suc A} {zero} ρ v S with () ← ρ ⟨$⟩ʳ zero
merge-preimage-ρ {suc A} {suc B} ρ v S = begin
merge v (preimage ρʳ S) ≈⟨ merge-removeAt (ρˡ zero) v (preimage ρʳ S) ⟩
mask (preimage ρʳ S) v (ρˡ zero) ∙ merge v- [preimage-ρʳ-S]- ≈⟨ ∙-congʳ ≈vρˡ0? ⟩
mask S (pull v ρˡ) zero ∙ merge v- [preimage-ρʳ-S]- ≈⟨ ∙-congˡ (merge-cong₂ v- preimage-) ⟩
mask S (pull v ρˡ) zero ∙ merge v- (preimage ρʳ- S-) ≈⟨ ∙-congˡ (merge-preimage-ρ ρ- v- S-) ⟩
mask S (pull v ρˡ) zero ∙ merge (pull v- ρˡ-) S- ≈⟨ ∙-congˡ (merge-cong S- (reflexive ∘ pull-v-ρˡ-)) ⟩
mask S (pull v ρˡ) zero ∙ merge (tail (pull v ρˡ)) S- ≡⟨⟩
merge (pull v ρˡ) S ∎
where
ρˡ : Fin (suc B) → Fin (suc A)
ρˡ = ρ ⟨$⟩ˡ_
ρʳ : Fin (suc A) → Fin (suc B)
ρʳ = ρ ⟨$⟩ʳ_
ρ- : Permutation A B
ρ- = remove (ρˡ zero) ρ
ρˡ- : Fin B → Fin A
ρˡ- = ρ- ⟨$⟩ˡ_
ρʳ- : Fin A → Fin B
ρʳ- = ρ- ⟨$⟩ʳ_
v- : ∣ Values A ∣
v- = removeAt v (ρˡ zero)
S- : Subset B
S- = S ∘ suc
[preimage-ρʳ-S]- : Subset A
[preimage-ρʳ-S]- = Vec.removeAt (preimage ρʳ S) (ρˡ zero)
vρˡ0? : Value
vρˡ0? = head (pull v ρˡ) when S zero
≈vρˡ0? : mask (S ∘ ρʳ ∘ ρˡ) (pull v ρˡ) zero ≈ mask S (pull v ρˡ) zero
≈vρˡ0? = mask-cong₁ (λ i → ≡.cong S (inverseʳ ρ {i})) (pull v ρˡ) zero
module _ where
open ≡-Reasoning
preimage- : [preimage-ρʳ-S]- ≗ preimage ρʳ- S-
preimage- x = begin
[preimage-ρʳ-S]- x ≡⟨⟩
Vec.removeAt (preimage ρʳ S) (ρˡ zero) x ≡⟨⟩
S (ρʳ (punchIn (ρˡ zero) x)) ≡⟨ ≡.cong S (punchIn-permute ρ (ρˡ zero) x) ⟩
S (punchIn (ρʳ (ρˡ zero)) (ρʳ- x)) ≡⟨ ≡.cong (λ h → S (punchIn h (ρʳ- x))) (inverseʳ ρ) ⟩
S (punchIn zero (ρʳ- x)) ≡⟨⟩
S (suc (ρʳ- x)) ≡⟨⟩
preimage ρʳ- S- x ∎
pull-v-ρˡ- : pull v- ρˡ- ≗ tail (pull v ρˡ)
pull-v-ρˡ- i = begin
v- (ρˡ- i) ≡⟨⟩
v (punchIn (ρˡ zero) (punchOut {A} {ρˡ zero} _)) ≡⟨ ≡.cong v (punchIn-punchOut _) ⟩
v (ρˡ (punchIn (ρʳ (ρˡ zero)) i)) ≡⟨ ≡.cong (λ h → v (ρˡ (punchIn h i))) (inverseʳ ρ) ⟩
v (ρˡ (punchIn zero i)) ≡⟨⟩
v (ρˡ (suc i)) ≡⟨⟩
tail (v ∘ ρˡ) i ∎
open ≈-Reasoning Valueₛ
opaque
unfolding push merge mask
mutual
merge-preimage
: {A B : ℕ}
(f : Fin A → Fin B)
→ (v : ∣ Values A ∣)
(S : Subset B)
→ merge v (preimage f S) ≈ merge (push v f) S
merge-preimage {zero} {zero} f v S = refl
merge-preimage {zero} {suc B} f v S = sym (trans (cong sumₛ (mask-<ε> S)) (sum-<ε> (suc B)))
merge-preimage {suc A} {zero} f v S with () ← f zero
merge-preimage {suc A} {suc B} f v S with insert-f0-0 f
... | ρ , ρf0≡0 = begin
merge v (preimage f S) ≈⟨ merge-cong₂ v (preimage-cong₁ (λ x → inverseˡ ρ {f x}) S) ⟨
merge v (preimage (ρˡ ∘ ρʳ ∘ f) S) ≡⟨⟩
merge v (preimage (ρʳ ∘ f) (preimage ρˡ S)) ≈⟨ merge-preimage-f0≡0 (ρʳ ∘ f) ρf0≡0 v (preimage ρˡ S) ⟩
merge (push v (ρʳ ∘ f)) (preimage ρˡ S) ≈⟨ merge-preimage-ρ (flip ρ) (push v (ρʳ ∘ f)) S ⟩
merge (pull (push v (ρʳ ∘ f)) ρʳ) S ≈⟨ merge-cong S (merge-cong₂ v ∘ preimage-cong₂ (ρʳ ∘ f) ∘ ⁅⁆∘ρ ρ) ⟩
merge (push v (ρˡ ∘ ρʳ ∘ f)) S ≈⟨ merge-cong S (push-cong v (λ x → inverseˡ ρ {f x})) ⟩
merge (push v f) S ∎
where
open ≈-Reasoning Valueₛ
ρʳ ρˡ : Fin (ℕ.suc B) → Fin (ℕ.suc B)
ρʳ = ρ ⟨$⟩ʳ_
ρˡ = ρ ⟨$⟩ˡ_
merge-preimage-f0≡0
: {A B : ℕ}
(f : Fin (suc A) → Fin (suc B))
→ f zero ≡ zero
→ (v : ∣ Values (suc A) ∣)
(S : Subset (suc B))
→ merge v (preimage f S) ≈ merge (push v f) S
merge-preimage-f0≡0 {A} {B} f f0≡0 v S
using S0 , S- ← S zero , S ∘ suc
using v0 , v- ← head v , tail v
using f0 , f- ← f zero , f ∘ suc = begin
merge v f⁻¹[S] ≡⟨⟩
v0? ∙ merge v- f⁻¹[S]- ≈⟨ ∙-congˡ (merge-preimage f- v- S) ⟩
v0? ∙ merge f[v-] S ≡⟨⟩
v0? ∙ (f[v-]0? ∙ merge f[v-]- S-) ≈⟨ assoc v0? f[v-]0? (merge f[v-]- S-) ⟨
v0? ∙ f[v-]0? ∙ merge f[v-]- S- ≈⟨ ∙-congʳ v0?∙f[v-]0?≈f[v]0? ⟩
f[v]0? ∙ merge f[v-]- S- ≈⟨ ∙-congˡ (merge-cong S- ≋f[v]-) ⟩
f[v]0? ∙ merge f[v]- S- ≡⟨⟩
merge f[v] S ∎
where
open ≈-Reasoning Valueₛ
f⁻¹[S] : Subset (suc A)
f⁻¹[S] = preimage f S
f⁻¹[S]- : Subset A
f⁻¹[S]- = f⁻¹[S] ∘ suc
f⁻¹[S]0 : Bool
f⁻¹[S]0 = f⁻¹[S] zero
f[v] : ∣ Values (suc B) ∣
f[v] = push v f
f[v]- : Vector Value B
f[v]- = tail f[v]
f[v]0 : Value
f[v]0 = head f[v]
f[v-] : ∣ Values (suc B) ∣
f[v-] = push v- f-
f[v-]- : Vector Value B
f[v-]- = tail f[v-]
f[v-]0 : Value
f[v-]0 = head f[v-]
v0? f[v-]0? v0?+[f[v-]0?] f[v]0? : Value
v0? = v0 when f⁻¹[S]0
f[v-]0? = f[v-]0 when S0
v0?+[f[v-]0?] = if S0 then v0? ∙ f[v-]0 else v0?
f[v]0? = f[v]0 when S0
v0?∙f[v-]0?≈f[v]0? : v0? ∙ f[v-]0? ≈ f[v]0?
v0?∙f[v-]0?≈f[v]0? rewrite f0≡0 with S0
... | true = refl
... | false = identityˡ ε
≋f[v]- : f[v-]- ≋ f[v]-
≋f[v]- x rewrite f0≡0 = sym (identityˡ (push v- f- (suc x)))
opaque
unfolding push
merge-push
: {A B C : ℕ}
(f : Fin A → Fin B)
(g : Fin B → Fin C)
→ (v : ∣ Values A ∣)
→ push v (g ∘ f) ≋ push (push v f) g
merge-push f g v i = merge-preimage f v (preimage g ⁅ i ⁆)
|