1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
{-# OPTIONS --without-K --safe #-}
module FinMerge.Properties where
open import Data.Empty using (⊥-elim)
open import Data.Fin using (Fin; fromℕ<; toℕ; #_; lower₁)
open import Data.Fin.Properties using (¬Fin0)
open import Data.Nat using (ℕ; _+_; _≤_; _<_; z<s; pred; z≤n; s≤s)
open import Data.Nat.Properties using (≤-trans; <⇒≢)
open import Data.Product using (_,_; proj₁; proj₂; Σ-syntax)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong-app; sym; _≢_)
open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning)
open import Data.Maybe.Base using (Maybe; nothing; just; fromMaybe)
open import Function using (id; _∘_)
open import Util using (_<_<_; _<_≤_; toℕ<; less; equal; greater; compare)
open import FinMerge using (merge; pluck; glue-once; glue-iter)
private
variable
m n : ℕ
not-n : {x : Fin (ℕ.suc n)} → toℕ x < m ≤ n → n ≢ toℕ x
not-n (x<m , m≤n) n≡x = <⇒≢ (≤-trans x<m m≤n) (sym n≡x)
pluck-<
: {x : Fin (ℕ.suc n)}
→ (m≤n : m ≤ n)
→ (x<m : toℕ x < m)
→ pluck m≤n x ≡ just (lower₁ x (not-n (x<m , m≤n)))
pluck-< {_} {_} {Fin.zero} (_≤_.s≤s m≤n) (_≤_.s≤s x<m) = refl
pluck-< {_} {_} {Fin.suc x} (_≤_.s≤s m≤n) (_≤_.s≤s x<m) = ≡
where
open ≡-Reasoning
≡ : pluck (_≤_.s≤s m≤n) (Fin.suc x)
≡ just (lower₁ (Fin.suc x) (not-n (s≤s x<m , s≤s m≤n)))
≡ = begin
pluck (_≤_.s≤s m≤n) (Fin.suc x) ≡⟨⟩
Data.Maybe.Base.map Fin.suc (pluck m≤n x)
≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-< m≤n x<m) ⟩
Data.Maybe.Base.map Fin.suc (just (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩
just (Fin.suc (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩
just (lower₁ (Fin.suc x) (not-n (s≤s x<m , s≤s m≤n))) ∎
pluck-≡
: {x : Fin (ℕ.suc n)}
→ (m≤n : m ≤ n)
→ (x≡m : toℕ x ≡ m)
→ pluck m≤n x ≡ nothing
pluck-≡ {_} {_} {Fin.zero} z≤n x≡m = refl
pluck-≡ {_} {_} {Fin.suc x} (s≤s m≤n) refl = ≡
where
open ≡-Reasoning
≡ : pluck (s≤s m≤n) (Fin.suc x) ≡ nothing
≡ = begin
pluck (s≤s m≤n) (Fin.suc x) ≡⟨⟩
Data.Maybe.Base.map Fin.suc (pluck m≤n x)
≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-≡ m≤n refl) ⟩
Data.Maybe.Base.map Fin.suc nothing ≡⟨⟩
nothing ∎
i-to-i
: {i j : Fin (ℕ.suc n)} (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j ≤ n)
→ merge i<j≤n i ≡ lower₁ i (not-n i<j≤n)
i-to-i {i = i} (lt , le) = ≡
where
open ≡-Reasoning
≡ : merge (lt , le) i ≡ lower₁ i (not-n (lt , le))
≡ = begin
merge (lt , le) i ≡⟨⟩
fromMaybe (fromℕ< (≤-trans lt le)) (pluck le i)
≡⟨ cong (fromMaybe (fromℕ< (≤-trans lt le))) (pluck-< le lt) ⟩
fromMaybe (fromℕ< (≤-trans lt le)) (just (lower₁ i (not-n (lt , le)))) ≡⟨⟩
lower₁ i (not-n (lt , le)) ∎
lemma₁
: {i j : Fin (ℕ.suc n)} ((lt , le) : toℕ i < toℕ j ≤ n)
→ fromℕ< (≤-trans lt le) ≡ lower₁ i (not-n (lt , le))
lemma₁ {ℕ.suc _} {Fin.zero} {Fin.suc _} _ = refl
lemma₁ {ℕ.suc _} {Fin.suc _} {Fin.suc _} (s≤s lt , s≤s le) = cong Fin.suc (lemma₁ (lt , le))
j-to-i
: {i j : Fin (ℕ.suc n)} (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j ≤ n)
→ merge i<j≤n j ≡ lower₁ i (not-n i<j≤n)
j-to-i {i = i} {j = j} (lt , le) = ≡
where
open ≡-Reasoning
≡ : merge (lt , le) j ≡ lower₁ i (not-n (lt , le))
≡ = begin
merge (lt , le) j ≡⟨⟩
fromMaybe (fromℕ< (≤-trans lt le)) (pluck le j)
≡⟨ cong (fromMaybe (fromℕ< (≤-trans lt le))) (pluck-≡ le refl) ⟩
fromMaybe (fromℕ< (≤-trans lt le)) nothing ≡⟨⟩
fromℕ< (≤-trans lt le) ≡⟨ lemma₁ (lt , le) ⟩
lower₁ i (not-n (lt , le)) ∎
merge-i-j
: {i j : Fin (ℕ.suc n)}
→ (i<j≤n : toℕ i < toℕ j ≤ n)
→ merge i<j≤n i ≡ merge i<j≤n j
merge-i-j {_} {i} {j} i<j≤n = ≡
where
open ≡-Reasoning
≡ : merge i<j≤n i ≡ merge i<j≤n j
≡ = begin
merge i<j≤n i ≡⟨ i-to-i i<j≤n ⟩
lower₁ i (not-n i<j≤n) ≡⟨ sym (j-to-i i<j≤n) ⟩
merge i<j≤n j ∎
glue-once-correct
: (f0 g0 : Fin (ℕ.suc n))
→ proj₂ (glue-once f0 g0) f0 ≡ proj₂ (glue-once f0 g0) g0
glue-once-correct {n} f0 g0 with compare f0 g0
... | less (f0<g0 , s≤s g0≤n) = merge-i-j (f0<g0 , g0≤n)
... | equal f0≡g0 = f0≡g0
... | greater (g0<f0 , s≤s f0≤n) = sym (merge-i-j (g0<f0 , f0≤n))
glue-iter-append
: {y : ℕ}
→ (f g : Fin m → Fin y)
→ (h : Fin n → Fin y)
→ Σ[ h′ ∈ (Fin y → Fin (proj₁ (glue-iter f g h))) ] (proj₂ (glue-iter f g h) ≡ h′ ∘ h)
glue-iter-append {ℕ.zero} f g h = id , refl
glue-iter-append {ℕ.suc m} {_} {ℕ.zero} f g h = ⊥-elim (¬Fin0 (f (# 0)))
glue-iter-append {ℕ.suc m} {_} {ℕ.suc y} f g h with
glue-iter-append
(proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ f ∘ Fin.suc)
(proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ g ∘ Fin.suc)
(proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ h)
... | h′ , glue-p∘h≡h′∘p∘h = h′ ∘ proj₂ (glue-once (f (# 0)) (g (# 0))) , glue-p∘h≡h′∘p∘h
lemma₂
: (f g : Fin (ℕ.suc m) → Fin n)
→ let p = proj₂ (glue-iter f g id) in p (f (# 0)) ≡ p (g (# 0))
lemma₂ {_} {ℕ.zero} f g = ⊥-elim (¬Fin0 (f (# 0)))
lemma₂ {_} {ℕ.suc n} f g with
glue-iter-append
(proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ f ∘ Fin.suc)
(proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ g ∘ Fin.suc)
(proj₂ (glue-once (f (# 0)) (g (# 0))))
... | h′ , glue≡h′∘h = ≡
where
open ≡-Reasoning
p = proj₂ (glue-once (f (# 0)) (g (# 0)))
f′ = f ∘ Fin.suc
g′ = g ∘ Fin.suc
≡ : proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (f Fin.zero)
≡ proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (g Fin.zero)
≡ = begin
proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (f Fin.zero)
≡⟨ cong-app glue≡h′∘h (f Fin.zero) ⟩
h′ (p (f Fin.zero)) ≡⟨ cong h′ (glue-once-correct (f (# 0)) (g (# 0))) ⟩
h′ (p (g Fin.zero)) ≡⟨ sym (cong-app glue≡h′∘h (g Fin.zero)) ⟩
proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (g Fin.zero) ∎
|