aboutsummaryrefslogtreecommitdiff
path: root/FinMerge/Properties.agda
blob: c250abb96529f6acf25f261416a9f4a52e13ce33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
{-# OPTIONS --without-K --safe #-}
module FinMerge.Properties where

open import Data.Empty using (⊥-elim)
open import Data.Fin using (Fin; fromℕ<; toℕ; #_; lower₁)
open import Data.Fin.Properties using (¬Fin0)
open import Data.Nat using (ℕ; _+_; _≤_; _<_; z<s; pred; z≤n; s≤s)
open import Data.Nat.Properties using (≤-trans; <⇒≢)
open import Data.Product using (_,_; proj₁; proj₂; Σ-syntax)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong-app; sym; _≢_)
open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning)
open import Data.Maybe.Base using (Maybe; map; nothing; just; fromMaybe)
open import Function using (id;  _∘_)

open import Util using (_<_<_; _<_≤_; toℕ<; Ordering; less; equal; greater; compare)

open import FinMerge using (merge; unmerge; pluck; glue-once; glue-unglue-once; glue-iter)


private
  variable
    m n : not-n : {x : Fin (ℕ.suc n)}  toℕ x < m  n  n  toℕ x
not-n (x<m , m≤n) n≡x = <⇒≢ (≤-trans x<m m≤n) (sym n≡x)

pluck-<
    : {x : Fin (ℕ.suc n)}
     (m≤n : m  n)
     (x<m : toℕ x < m)
     pluck m≤n x  just (lower₁ x (not-n (x<m , m≤n)))
pluck-< {_} {_} {Fin.zero} (s≤s m≤n) (s≤s x<m) = refl
pluck-< {_} {_} {Fin.suc x} (s≤s m≤n) (s≤s x<m) =   where
    open ≡-Reasoning
     : pluck (s≤s m≤n) (Fin.suc x)
         just (lower₁ (Fin.suc x) (not-n (s≤s x<m , s≤s m≤n)))
     = begin
        pluck (s≤s m≤n) (Fin.suc x) ≡⟨⟩
        Data.Maybe.Base.map Fin.suc (pluck m≤n x)
            ≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-< m≤n x<m)         Data.Maybe.Base.map Fin.suc (just (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩
        just (Fin.suc (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩
        just (lower₁ (Fin.suc x) (not-n (s≤s x<m , s≤s m≤n))) pluck-≡
    : {x : Fin (ℕ.suc n)}
     (m≤n : m  n)
     (x≡m : toℕ x  m)
     pluck m≤n x  nothing
pluck-≡ {_} {_} {Fin.zero} z≤n x≡m = refl
pluck-≡ {_} {_} {Fin.suc x} (s≤s m≤n) refl =   where
    open ≡-Reasoning
     : pluck (s≤s m≤n) (Fin.suc x)  nothing
     = begin
        pluck (s≤s m≤n) (Fin.suc x) ≡⟨⟩
        Data.Maybe.Base.map Fin.suc (pluck m≤n x)
            ≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-≡ m≤n refl)         Data.Maybe.Base.map Fin.suc nothing ≡⟨⟩
        nothing i-to-i
    : {i j : Fin (ℕ.suc n)} (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j  n)
     merge i<j≤n i  lower₁ i (not-n i<j≤n)
i-to-i {i = i} (lt , le) =   where
    open ≡-Reasoning
     : merge (lt , le) i  lower₁ i (not-n (lt , le))
     = begin
        merge (lt , le) i ≡⟨⟩
        fromMaybe (fromℕ< (≤-trans lt le)) (pluck le i)
            ≡⟨ cong (fromMaybe (fromℕ< (≤-trans lt le))) (pluck-< le lt)         fromMaybe (fromℕ< (≤-trans lt le)) (just (lower₁ i (not-n (lt , le)))) ≡⟨⟩
        lower₁ i (not-n (lt , le)) lemma₁
    : {i j : Fin (ℕ.suc n)} ((lt , le) : toℕ i < toℕ j  n)
     fromℕ< (≤-trans lt le)  lower₁ i (not-n (lt , le))
lemma₁ {ℕ.suc _} {Fin.zero} {Fin.suc _} _ = refl
lemma₁ {ℕ.suc _} {Fin.suc _} {Fin.suc _} (s≤s lt , s≤s le) = cong Fin.suc (lemma₁ (lt , le))

j-to-i
    : {i j : Fin (ℕ.suc n)} (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j  n)
     merge i<j≤n j  lower₁ i (not-n i<j≤n)
j-to-i {i = i} {j = j} (lt , le) =   where
    open ≡-Reasoning
     : merge (lt , le) j  lower₁ i (not-n (lt , le))
     = begin
        merge (lt , le) j ≡⟨⟩
        fromMaybe (fromℕ< (≤-trans lt le)) (pluck le j)
            ≡⟨ cong (fromMaybe (fromℕ< (≤-trans lt le))) (pluck-≡ le refl)         fromMaybe (fromℕ< (≤-trans lt le)) nothing ≡⟨⟩
        fromℕ< (≤-trans lt le) ≡⟨ lemma₁ (lt , le)         lower₁ i (not-n (lt , le)) merge-i-j
    : {i j : Fin (ℕ.suc n)}
     (i<j≤n : toℕ i < toℕ j  n)
     merge i<j≤n i  merge i<j≤n j
merge-i-j {_} {i} {j} i<j≤n =   where
    open ≡-Reasoning
     : merge i<j≤n i  merge i<j≤n j
     = begin
      merge i<j≤n i ≡⟨ i-to-i i<j≤n       lower₁ i (not-n i<j≤n) ≡⟨ sym (j-to-i i<j≤n)       merge i<j≤n j glue-once-correct
    : {i j : Fin (ℕ.suc n)}
     (i?j : Ordering i j)
     proj₂ (glue-once i?j) i  proj₂ (glue-once i?j) j
glue-once-correct (less (i<j , s≤s j≤n)) = merge-i-j (i<j , j≤n)
glue-once-correct (equal i≡j) = i≡j
glue-once-correct (greater (j<i , s≤s i≤n)) = sym (merge-i-j (j<i , i≤n))

glue-once-correct′
    : {i j : Fin (ℕ.suc n)}
     (i?j : Ordering i j)
     proj₁ (proj₂ (glue-unglue-once i?j)) i  proj₁ (proj₂ (glue-unglue-once i?j)) j
glue-once-correct′ (less (i<j , s≤s j≤n)) = merge-i-j (i<j , j≤n)
glue-once-correct′ (equal i≡j) = i≡j
glue-once-correct′ (greater (j<i , s≤s i≤n)) = sym (merge-i-j (j<i , i≤n))

glue-iter-append
    : {y : }
     (f g : Fin m  Fin y)
     (h : Fin n  Fin y)
     Σ[ h′  (Fin y  Fin (proj₁ (glue-iter f g h))) ] (proj₂ (glue-iter f g h)  h′  h)
glue-iter-append {ℕ.zero} f g h = id , refl
glue-iter-append {ℕ.suc m} {_} {ℕ.zero} f g h = ⊥-elim (¬Fin0 (f (# 0)))
glue-iter-append {ℕ.suc m} {_} {ℕ.suc y} f g h =
  let
    p = proj₁ (proj₂ (glue-unglue-once (compare (f (# 0)) (g (# 0)))))
    h′ , glue-p∘h≡h′∘p∘h = glue-iter-append (p  f  Fin.suc) (p  g  Fin.suc) (p  h)
  in
    h′  p , glue-p∘h≡h′∘p∘h

lemma₂
    : (f g : Fin (ℕ.suc m)  Fin n)
     let p = proj₂ (glue-iter f g id) in p (f (# 0))  p (g (# 0))
lemma₂ {_} {ℕ.zero} f g = ⊥-elim (¬Fin0 (f (# 0)))
lemma₂ {_} {ℕ.suc n} f g =
  let
    p = proj₁ (proj₂ (glue-unglue-once (compare (f (# 0)) (g (# 0)))))
    h′ , glue≡h′∘h = glue-iter-append (p  f  Fin.suc) (p  g  Fin.suc) p
    f′ = f  Fin.suc
    g′ = g  Fin.suc
     : proj₂ (glue-iter (p  f′) (p  g′) p) (f Fin.zero)
       proj₂ (glue-iter (p  f′) (p  g′) p) (g Fin.zero)
     = begin
        proj₂ (glue-iter (p  f′) (p  g′) p) (f Fin.zero)
                              ≡⟨ cong-app glue≡h′∘h (f Fin.zero)         h′ (p (f Fin.zero))   ≡⟨ cong h′ (glue-once-correct′ (compare (f (# 0)) (g (# 0))))         h′ (p (g Fin.zero))   ≡⟨ sym (cong-app glue≡h′∘h (g Fin.zero))         proj₂ (glue-iter (p  f′) (p  g′) p) (g Fin.zero)   in
      where open ≡-Reasoning

j-to-i′
    : {i : }
     {j : Fin (ℕ.suc n)}
     ((i<j , j≤n) : i < toℕ j  n)
     merge (i<j , j≤n) j  fromℕ< (≤-trans i<j j≤n)
j-to-i′ (i<j , j≤n) = cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (j-to-nothing j≤n)
  where
    j-to-nothing : {j : Fin (ℕ.suc n)}  (j≤n : toℕ j  n)  pluck j≤n j  nothing
    j-to-nothing {ℕ.zero} {Fin.zero} z≤n = refl
    j-to-nothing {ℕ.suc n} {Fin.zero} z≤n = refl
    j-to-nothing {ℕ.suc n} {Fin.suc j} (s≤s j≤n) = cong (map Fin.suc) (j-to-nothing j≤n)

unmerge-i
    : {i j : Fin (ℕ.suc n)}
     ((i<j , j≤n) : toℕ i < toℕ j  n)
     unmerge (i<j , j≤n) (fromℕ< (≤-trans i<j j≤n))  i
unmerge-i {ℕ.suc n} {Fin.zero} {Fin.suc j} (s≤s i<j , s≤s j≤n) = refl
unmerge-i {ℕ.suc n} {Fin.suc i} {Fin.suc j} (s≤s i<j , s≤s j≤n) = cong Fin.suc (unmerge-i (i<j , j≤n))

unmerge-k-<
    : {i j k : Fin (ℕ.suc n)}
     ((i<j , j≤n) : toℕ i < toℕ j  n)
     (k<j : toℕ k < toℕ j)
     unmerge (i<j , j≤n) (fromℕ< (≤-trans k<j j≤n))  k
unmerge-k-< {ℕ.suc n} {i} {Fin.suc j} {Fin.zero} (_ , s≤s j≤n) (s≤s k<j)  = refl
unmerge-k-< {ℕ.suc n} {Fin.zero} {Fin.suc (Fin.suc j)} {Fin.suc k} (s≤s z≤n , s≤s j≤n) (s≤s k<j) = cong Fin.suc (unmerge-k-< (s≤s z≤n , j≤n) k<j)
unmerge-k-< {ℕ.suc n} {Fin.suc i} {Fin.suc j} {Fin.suc k} (s≤s i<j , s≤s j≤n) (s≤s k<j) = cong Fin.suc (unmerge-k-< (i<j , j≤n) k<j)

k-to-k-<
    : {i j k : Fin (ℕ.suc n)}
     ((i<j , j≤n) : toℕ i < toℕ j  n)
     (k<j : toℕ k < toℕ j)
     merge (i<j , j≤n) k  fromℕ< (≤-trans k<j j≤n)
k-to-k-< (i<j , j≤n) k<j = cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (k-to-just (k<j , j≤n))
  where
    k-to-just
        : {j k : Fin (ℕ.suc n)}
         ((k<j , j≤n) : toℕ k < toℕ j  n)
         pluck j≤n k  just (fromℕ< (≤-trans k<j j≤n))
    k-to-just {ℕ.suc n} {Fin.suc j} {Fin.zero} (s≤s k<j , s≤s j≤n) = refl
    k-to-just {ℕ.suc n} {Fin.suc j} {Fin.suc k} (s≤s k<j , s≤s j≤n) = cong (map Fin.suc) (k-to-just (k<j , j≤n))

sk-to-k->
    : {i j : Fin (ℕ.suc n)}
     {k : Fin n}
     ((i<j , j≤n) : toℕ i < toℕ j  n)
     (j<sk : toℕ j < ℕ.suc (toℕ k))
     merge (i<j , j≤n) (Fin.suc k)  k
sk-to-k-> (i<j , j≤n) j<sk = cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (sk-to-just j≤n j<sk)
  where
    sk-to-just
        : {n : }
         {j : Fin (ℕ.suc n)}
         {k : Fin n}
         (j≤n : toℕ j  n)
         (j<sk : toℕ j < ℕ.suc (toℕ k))
         pluck j≤n (Fin.suc k)  just k
    sk-to-just {ℕ.suc _} {Fin.zero} {Fin.zero} z≤n (s≤s _) = refl
    sk-to-just {ℕ.suc _} {Fin.zero} {Fin.suc _} z≤n (s≤s _) = refl
    sk-to-just {ℕ.suc _} {Fin.suc _} {Fin.suc _} (s≤s j≤n) (s≤s j<sk) = cong (map Fin.suc) (sk-to-just j≤n j<sk)

unmerge-k->
    : {i j : Fin (ℕ.suc n)}
     {k : Fin n}
     ((i<j , j≤n) : toℕ i < toℕ j  n)
     (j<sk : toℕ j < ℕ.suc (toℕ k))
     unmerge (i<j , j≤n) k  Fin.suc k
unmerge-k-> {ℕ.suc n} {Fin.zero} {Fin.suc Fin.zero} {Fin.suc k} (s≤s z≤n , s≤s z≤n) (s≤s j<sk) = refl
unmerge-k-> {ℕ.suc n} {Fin.zero} {Fin.suc (Fin.suc j)} {Fin.suc k} (s≤s z≤n , s≤s j≤n) (s≤s j<sk) = cong Fin.suc (unmerge-k-> (s≤s z≤n , j≤n) j<sk)
unmerge-k-> {ℕ.suc n} {Fin.suc i} {Fin.suc j} {Fin.suc k} (s≤s i<j , s≤s j≤n) (s≤s j<sk) = cong Fin.suc (unmerge-k-> (i<j , j≤n) j<sk)

unmerge-merge-<
    : {i j k : Fin (ℕ.suc n)}
     (i<j≤n : toℕ i < toℕ j  n)
     (k<j : toℕ k < toℕ j)
     unmerge i<j≤n (merge i<j≤n k)  k
unmerge-merge-< {n} {i} {j} {k} i<j≤n@(_ , j≤n) k<j =   where
    open ≡-Reasoning
     : unmerge i<j≤n (merge i<j≤n k)  k
     = begin
        unmerge i<j≤n (merge i<j≤n k)             ≡⟨ cong (unmerge i<j≤n) (k-to-k-< i<j≤n k<j)         unmerge i<j≤n (fromℕ< (≤-trans k<j j≤n))  ≡⟨ unmerge-k-< i<j≤n k<j         k                                         unmerge-merge-=
    : {i j k : Fin (ℕ.suc n)}
     (i<j≤n : toℕ i < toℕ j  n)
     k  j
     unmerge i<j≤n (merge i<j≤n k)  i
unmerge-merge-= {_} {i} {j} {k} i<j≤n@(i<j , j≤n) k≡j =   where
    open ≡-Reasoning
     : unmerge i<j≤n (merge i<j≤n k)  i
     = begin
        unmerge i<j≤n (merge i<j≤n k)             ≡⟨ cong (unmerge i<j≤n  merge i<j≤n) k≡j         unmerge i<j≤n (merge i<j≤n j)             ≡⟨ cong (unmerge i<j≤n) (j-to-i′ i<j≤n)         unmerge i<j≤n (fromℕ< (≤-trans i<j j≤n))  ≡⟨ unmerge-i i<j≤n         i                                         unmerge-merge->
    : {i j k : Fin (ℕ.suc n)}
     (i<j≤n : toℕ i < toℕ j  n)
     (j<k : toℕ j < toℕ k)
     unmerge i<j≤n (merge i<j≤n k)  k
unmerge-merge-> {n} {i} {j} {Fin.suc k} i<j≤n j<k =   where
    open ≡-Reasoning
     : unmerge i<j≤n (merge i<j≤n (Fin.suc k))  Fin.suc k
     = begin
        unmerge i<j≤n (merge i<j≤n (Fin.suc k)) ≡⟨ cong (unmerge i<j≤n) (sk-to-k-> i<j≤n j<k)         unmerge i<j≤n k                         ≡⟨ unmerge-k-> i<j≤n j<k         Fin.suc k                               unmerge-merge
    : {i j k : Fin (ℕ.suc n)}
     (i<j≤n : toℕ i < toℕ j  n)
     (f : Fin (ℕ.suc n)  Fin m)
     f i  f j
     f (unmerge i<j≤n (merge i<j≤n k))  f k
unmerge-merge {n} {m} {i} {j} {k} i<j≤n f fi≡fj with (compare k j)
... | less (k<j , _) = cong f (unmerge-merge-< i<j≤n k<j)
... | greater (j<k , _) = cong f (unmerge-merge-> i<j≤n j<k)
... | equal k≡j =   where
    open ≡-Reasoning
     : f (unmerge i<j≤n (merge i<j≤n k))  f k
     = begin
        f (unmerge i<j≤n (merge i<j≤n k)) ≡⟨ cong f (unmerge-merge-= i<j≤n k≡j)         f i                               ≡⟨ fi≡fj         f j                               ≡⟨ cong f (sym k≡j)         f k