aboutsummaryrefslogtreecommitdiff
path: root/FinMerge/Properties.agda
blob: e403d99af24e063da02aeb91b21a7f97dba3af99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
module FinMerge.Properties where

open import Data.Fin using (Fin; fromℕ<; toℕ; #_; lower₁)
open import Data.Fin.Properties using (¬Fin0)
open import Data.Nat using (ℕ; _+_; _≤_; _<_; z<s; pred; z≤n; s≤s)
open import Data.Nat.Properties using (≤-trans; <⇒≢)
open import Data.Product using (_,_; proj₁; proj₂; Σ-syntax)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong-app; sym; _≢_)
open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning)
open import Data.Maybe.Base using (Maybe; nothing; just; fromMaybe)
open import Function using (id;  _∘_)

open import Util using (_<_<_; _<_≤_; toℕ<; less; equal; greater; compare)

open import FinMerge using (merge; pluck; glue-iter)


private
  variable
    m n : not-n : {x : Fin (ℕ.suc n)}  toℕ x < m  n  n  toℕ x
not-n (x<m , m≤n) n≡x = <⇒≢ (≤-trans x<m m≤n) (sym n≡x)

pluck-<
    : {x : Fin (ℕ.suc n)}
     (m≤n : m  n)
     (x<m : toℕ x < m)
     pluck m≤n x  just (lower₁ x (not-n (x<m , m≤n)))
pluck-< {_} {_} {Fin.zero} (_≤_.s≤s m≤n) (_≤_.s≤s x<m) = refl
pluck-< {_} {_} {Fin.suc x} (_≤_.s≤s m≤n) (_≤_.s≤s x<m) =   where
    open ≡-Reasoning
     : pluck (_≤_.s≤s m≤n) (Fin.suc x)
         just (lower₁ (Fin.suc x) (not-n (s≤s x<m , s≤s m≤n)))
     = begin
        pluck (_≤_.s≤s m≤n) (Fin.suc x) ≡⟨⟩
        Data.Maybe.Base.map Fin.suc (pluck m≤n x)
            ≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-< m≤n x<m)         Data.Maybe.Base.map Fin.suc (just (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩
        just (Fin.suc (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩
        just (lower₁ (Fin.suc x) (not-n (s≤s x<m , s≤s m≤n))) pluck-≡
    : {x : Fin (ℕ.suc n)}
     (m≤n : m  n)
     (x≡m : toℕ x  m)
     pluck m≤n x  nothing
pluck-≡ {_} {_} {Fin.zero} z≤n x≡m = refl
pluck-≡ {_} {_} {Fin.suc x} (s≤s m≤n) refl =   where
    open ≡-Reasoning
     : pluck (s≤s m≤n) (Fin.suc x)  nothing
     = begin
        pluck (s≤s m≤n) (Fin.suc x) ≡⟨⟩
        Data.Maybe.Base.map Fin.suc (pluck m≤n x)
            ≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-≡ m≤n refl)         Data.Maybe.Base.map Fin.suc nothing ≡⟨⟩
        nothing i-to-i
    : {i j : Fin (ℕ.suc n)} (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j  n)
     merge i<j≤n i  lower₁ i (not-n i<j≤n)
i-to-i {i = i} (lt , le) =   where
    open ≡-Reasoning
     : merge (lt , le) i  lower₁ i (not-n (lt , le))
     = begin
        merge (lt , le) i ≡⟨⟩
        fromMaybe (fromℕ< (≤-trans lt le)) (pluck le i)
            ≡⟨ cong (fromMaybe (fromℕ< (≤-trans lt le))) (pluck-< le lt)         fromMaybe (fromℕ< (≤-trans lt le)) (just (lower₁ i (not-n (lt , le)))) ≡⟨⟩
        lower₁ i (not-n (lt , le)) lemma₁
    : {i j : Fin (ℕ.suc n)} ((lt , le) : toℕ i < toℕ j  n)
     fromℕ< (≤-trans lt le)  lower₁ i (not-n (lt , le))
lemma₁ {ℕ.suc _} {Fin.zero} {Fin.suc _} _ = refl
lemma₁ {ℕ.suc _} {Fin.suc _} {Fin.suc _} (s≤s lt , s≤s le) = cong Fin.suc (lemma₁ (lt , le))

j-to-i
    : {i j : Fin (ℕ.suc n)} (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j  n)
     merge i<j≤n j  lower₁ i (not-n i<j≤n)
j-to-i {i = i} {j = j} (lt , le) =   where
    open ≡-Reasoning
     : merge (lt , le) j  lower₁ i (not-n (lt , le))
     = begin
        merge (lt , le) j ≡⟨⟩
        fromMaybe (fromℕ< (≤-trans lt le)) (pluck le j)
            ≡⟨ cong (fromMaybe (fromℕ< (≤-trans lt le))) (pluck-≡ le refl)         fromMaybe (fromℕ< (≤-trans lt le)) nothing ≡⟨⟩
        fromℕ< (≤-trans lt le) ≡⟨ lemma₁ (lt , le)         lower₁ i (not-n (lt , le)) merge-i-j
    : {i j : Fin (ℕ.suc n)}
     (i<j≤n : toℕ i < toℕ j  n)
     merge i<j≤n i  merge i<j≤n j
merge-i-j {_} {i} {j} i<j≤n =   where
    open ≡-Reasoning
     : merge i<j≤n i  merge i<j≤n j
     = begin
      merge i<j≤n i ≡⟨ i-to-i i<j≤n       lower₁ i (not-n i<j≤n) ≡⟨ sym (j-to-i i<j≤n)       merge i<j≤n j glue-iter-append
    : {y : }
     (f g : Fin m  Fin y)
     (h : Fin n  Fin y)
     Σ[ h′  (Fin y  Fin (proj₁ (glue-iter f g h))) ] (proj₂ (glue-iter f g h)  h′  h)
glue-iter-append {ℕ.zero} f g h = id , refl
glue-iter-append {ℕ.suc m} f g h with compare (f (# 0)) (g (# 0))
glue-iter-append {ℕ.suc m} f g h | less (f0<g0 , s≤s g0≤n)
  with
    glue-iter-append
        (merge (f0<g0 , g0≤n)  f  Fin.suc)
        (merge (f0<g0 , g0≤n)  g  Fin.suc)
        (merge (f0<g0 , g0≤n)  h)
... | h′ , glue-p∘h≡h′∘p∘h = h′  merge (f0<g0 , g0≤n) , glue-p∘h≡h′∘p∘h
glue-iter-append {ℕ.suc m} f g h | equal x = glue-iter-append (f  Fin.suc) (g  Fin.suc) h
glue-iter-append {ℕ.suc m} f g h | greater (g0<f0 , s≤s f0≤n)
  with
    glue-iter-append
        (merge (g0<f0 , f0≤n)  f  Fin.suc)
        (merge (g0<f0 , f0≤n)  g  Fin.suc)
        (merge (g0<f0 , f0≤n)  h)
... | h′ , glue-p∘h≡h′∘p∘h = h′  merge (g0<f0 , f0≤n) , glue-p∘h≡h′∘p∘h

lemma₂
    : (f g : Fin (ℕ.suc m)  Fin n)
     let p = proj₂ (glue-iter f g id) in p (f (# 0))  p (g (# 0))
lemma₂ f g with compare (f (# 0)) (g (# 0))
lemma₂ f g | less (f0<g0 , s≤s g0≤n)
  with
    glue-iter-append
        (merge (f0<g0 , g0≤n)  f  Fin.suc)
        (merge (f0<g0 , g0≤n)  g  Fin.suc)
        (merge (f0<g0 , g0≤n))
... | h′ , glue≡h′∘h =       where
        open ≡-Reasoning
        p = merge (f0<g0 , g0≤n)
        f′ = f  Fin.suc
        g′ = g  Fin.suc
         : proj₂ (glue-iter (p  f′) (p  g′) p) (f Fin.zero)
           proj₂ (glue-iter (p  f′) (p  g′) p) (g Fin.zero)
         = begin
            proj₂ (glue-iter (p  f′) (p  g′) p) (f Fin.zero)
                                  ≡⟨ cong-app glue≡h′∘h (f Fin.zero)             h′ (p (f Fin.zero))   ≡⟨ cong h′ (merge-i-j (f0<g0 , g0≤n))             h′ (p (g Fin.zero))   ≡⟨ sym (cong-app glue≡h′∘h (g Fin.zero))             proj₂ (glue-iter (p  f′) (p  g′) p) (g Fin.zero) ∎
lemma₂ f g | equal f0≡g0 = cong (proj₂ (glue-iter (f  Fin.suc) (g  Fin.suc) id)) f0≡g0
lemma₂ f g | greater (g0<f0 , s≤s f0≤n)
  with
    glue-iter-append
        (merge (g0<f0 , f0≤n)  f  Fin.suc)
        (merge (g0<f0 , f0≤n)  g  Fin.suc)
        (merge (g0<f0 , f0≤n)  id)
... | h′ , glue≡h′∘h =           where
            open ≡-Reasoning
            p = merge (g0<f0 , f0≤n)
            f′ = f  Fin.suc
            g′ = g  Fin.suc
             : proj₂ (glue-iter (p  f′) (p  g′) p) (f Fin.zero)
               proj₂ (glue-iter (p  f′) (p  g′) p) (g Fin.zero)
             = begin
                proj₂ (glue-iter (p  f′) (p  g′) p) (f Fin.zero)
                                      ≡⟨ cong-app glue≡h′∘h (f Fin.zero)                 h′ (p (f Fin.zero))   ≡⟨ cong h′ (sym (merge-i-j (g0<f0 , f0≤n)))                 h′ (p (g Fin.zero))   ≡⟨ sym (cong-app glue≡h′∘h (g Fin.zero))                 proj₂ (glue-iter (p  f′) (p  g′) p) (g Fin.zero)