1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
{-# OPTIONS --without-K --safe #-}
{-# OPTIONS --lossy-unification #-}
open import Level using (Level)
module Functor.Cartesian.Instance.Underlying.SymmetricMonoidal.FinitelyCocomplete {o ℓ e : Level} where
import Categories.Morphism.Reasoning as ⇒-Reasoning
import Categories.Category.Monoidal.Utilities as ⊗-Util
open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
open import Categories.Category.Product using (_※_)
open import Categories.Category.Product.Properties using () renaming (project₁ to p₁; project₂ to p₂; unique to u)
open import Categories.Functor.Core using (Functor)
open import Categories.Functor.Cartesian using (CartesianF)
open import Categories.Functor.Monoidal.Symmetric using (module Lax)
open import Categories.NaturalTransformation.Core using (ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric using (module Lax)
open import Categories.Object.Product using (IsProduct)
open import Categories.Object.Terminal using (IsTerminal)
open import Data.Product.Base using (_,_; <_,_>; proj₁; proj₂)
open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-CC)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
open import Category.Cartesian.Instance.SymMonCat {o} {ℓ} {e} using (SymMonCat-CC)
open import Functor.Instance.Underlying.SymmetricMonoidal.FinitelyCocomplete {o} {ℓ} {e} using () renaming (Underlying to U)
module CartesianCategory′ {o ℓ e : Level} (C : CartesianCategory o ℓ e) where
module CC = CartesianCategory C
open import Categories.Object.Terminal using (Terminal)
open Terminal CC.terminal public
open import Categories.Category.BinaryProducts using (BinaryProducts)
open BinaryProducts CC.products public
open CC public
module FC = CartesianCategory′ FinitelyCocompletes-CC
module SMC = CartesianCategory′ SymMonCat-CC
module U = Functor U
F-resp-⊤ : IsTerminal SMC.U (U.₀ FC.⊤)
F-resp-⊤ = _
F-resp-× : {A B : FC.Obj} → IsProduct SMC.U (U.₁ (FC.π₁ {A} {B})) (U.₁ (FC.π₂ {A} {B}))
F-resp-× {A} {B} = record
{ ⟨_,_⟩ = pairing
; project₁ = λ { {C} {F} {G} → project₁ {C} F G }
; project₂ = λ { {C} {F} {G} → project₂ {C} F G }
; unique = λ { {C} {H} {F} {G} ≃₁ ≃₂ → unique {C} F G H ≃₁ ≃₂ }
}
where
module _ {C : SMC.Obj} (F : Lax.SymmetricMonoidalFunctor C (U.₀ A)) (G : Lax.SymmetricMonoidalFunctor C (U.₀ B)) where
module F = Lax.SymmetricMonoidalFunctor F
module G = Lax.SymmetricMonoidalFunctor G
pairing : Lax.SymmetricMonoidalFunctor C (U.₀ (A FC.× B))
pairing = record
{ F = F.F ※ G.F
; isBraidedMonoidal = record
{ isMonoidal = record
{ ε = F.ε , G.ε
; ⊗-homo = ntHelper record
{ η = < F.⊗-homo.η , G.⊗-homo.η >
; commute = < F.⊗-homo.commute , G.⊗-homo.commute >
}
; associativity = F.associativity , G.associativity
; unitaryˡ = F.unitaryˡ , G.unitaryˡ
; unitaryʳ = F.unitaryʳ , G.unitaryʳ
}
; braiding-compat = F.braiding-compat , G.braiding-compat
}
}
module pairing = Lax.SymmetricMonoidalFunctor pairing
module A = FinitelyCocompleteCategory A
module B = FinitelyCocompleteCategory B
module C = SymmetricMonoidalCategory C
module A′ = SymmetricMonoidalCategory (U.₀ A)
module B′ = SymmetricMonoidalCategory (U.₀ B)
project₁ : Lax.SymmetricMonoidalNaturalIsomorphism ((U.₁ (FC.π₁ {A} {B})) SMC.∘ pairing) F
project₁ = record
{ U = p₁ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {C.U} {F.F} {G.F}
; F⇒G-isMonoidal = record
{ ε-compat = ¡-unique₂ (id ∘ F.ε ∘ ¡) F.ε
; ⊗-homo-compat = λ { {X} {Y} → identityˡ ○ refl⟩∘⟨ sym ([]-cong₂ identityʳ identityʳ) }
}
}
where
open FinitelyCocompleteCategory A
open HomReasoning
open Equiv
open ⇒-Reasoning A.U
project₂ : Lax.SymmetricMonoidalNaturalIsomorphism (U.₁ {A FC.× B} {B} FC.π₂ SMC.∘ pairing) G
project₂ = record
{ U = p₂ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {C.U} {F.F} {G.F}
; F⇒G-isMonoidal = record
{ ε-compat = ¡-unique₂ (id ∘ G.ε ∘ ¡) G.ε
; ⊗-homo-compat = λ { {X} {Y} → identityˡ ○ refl⟩∘⟨ sym ([]-cong₂ identityʳ identityʳ) }
}
}
where
open FinitelyCocompleteCategory B
open HomReasoning
open Equiv
open ⇒-Reasoning B.U
unique
: (H : Lax.SymmetricMonoidalFunctor C (U.F₀ (A FC.× B)))
→ Lax.SymmetricMonoidalNaturalIsomorphism (U.₁ {A FC.× B} {A} FC.π₁ SMC.∘ H) F
→ Lax.SymmetricMonoidalNaturalIsomorphism (U.₁ {A FC.× B} {B} FC.π₂ SMC.∘ H) G
→ Lax.SymmetricMonoidalNaturalIsomorphism pairing H
unique H ≃₁ ≃₂ = record
{ U = u {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {C.U} {F.F} {G.F} {H.F} ≃₁.U ≃₂.U
; F⇒G-isMonoidal = record
{ ε-compat = ε-compat₁ , ε-compat₂
; ⊗-homo-compat =
λ { {X} {Y} → ⊗-homo-compat₁ {X} {Y} , ⊗-homo-compat₂ {X} {Y} }
}
}
where
module H = Lax.SymmetricMonoidalFunctor H
module ≃₁ = Lax.SymmetricMonoidalNaturalIsomorphism ≃₁
module ≃₂ = Lax.SymmetricMonoidalNaturalIsomorphism ≃₂
ε-compat₁ : ≃₁.⇐.η C.unit A.∘ F.ε A.≈ proj₁ H.ε
ε-compat₁ = refl⟩∘⟨ sym ≃₁.ε-compat ○ cancelˡ (≃₁.iso.isoˡ C.unit) ○ ¡-unique₂ (proj₁ H.ε ∘ ¡) (proj₁ H.ε)
where
open A
open HomReasoning
open ⇒-Reasoning A.U
open Equiv
ε-compat₂ : ≃₂.⇐.η C.unit B.∘ G.ε B.≈ proj₂ H.ε
ε-compat₂ = refl⟩∘⟨ sym ≃₂.ε-compat ○ cancelˡ (≃₂.iso.isoˡ C.unit) ○ ¡-unique₂ (proj₂ H.ε ∘ ¡) (proj₂ H.ε)
where
open B
open HomReasoning
open ⇒-Reasoning B.U
open Equiv
⊗-homo-compat₁
: {X Y : C.Obj}
→ ≃₁.⇐.η (C.⊗.₀ (X , Y))
A.∘ F.⊗-homo.η (X , Y)
A.≈ proj₁ (H.⊗-homo.η (X , Y))
A.∘ (≃₁.⇐.η X A.+₁ ≃₁.⇐.η Y)
⊗-homo-compat₁ {X} {Y} = switch-fromtoʳ (≃₁.FX≅GX ⊗ᵢ ≃₁.FX≅GX) (assoc ○ sym (switch-fromtoˡ ≃₁.FX≅GX (refl⟩∘⟨ introʳ A.+-η ○ ≃₁.⊗-homo-compat)))
where
open A
open HomReasoning
open Equiv
open ⇒-Reasoning A.U
open ⊗-Util A′.monoidal
⊗-homo-compat₂
: {X Y : C.Obj}
→ ≃₂.⇐.η (C.⊗.₀ (X , Y))
B.∘ G.⊗-homo.η (X , Y)
B.≈ proj₂ (H.⊗-homo.η (X , Y))
B.∘ (≃₂.⇐.η X B.+₁ ≃₂.⇐.η Y)
⊗-homo-compat₂ = switch-fromtoʳ (≃₂.FX≅GX ⊗ᵢ ≃₂.FX≅GX) (assoc ○ sym (switch-fromtoˡ ≃₂.FX≅GX (refl⟩∘⟨ introʳ B.+-η ○ ≃₂.⊗-homo-compat)))
where
open B
open HomReasoning
open Equiv
open ⇒-Reasoning B.U
open ⊗-Util B′.monoidal
Underlying : CartesianF FinitelyCocompletes-CC SymMonCat-CC
Underlying = record
{ F = U
; isCartesian = record
{ F-resp-⊤ = F-resp-⊤
; F-resp-× = F-resp-×
}
}
|