blob: b7ac9da28a87a5007d87ed2f66ee5d0d59ec6505 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
{-# OPTIONS --without-K --safe #-}
module Functor.Exact where
import Function.Base as Function
open import Categories.Category.Core using (Category)
open import Categories.Category.Cocomplete.Finitely using (FinitelyCocomplete)
open import Categories.Diagram.Coequalizer using (Coequalizer; IsCoequalizer; IsCoequalizer⇒Coequalizer)
open import Categories.Diagram.Pushout using (IsPushout; Pushout)
open import Categories.Diagram.Pushout.Properties using (Coproduct×Coequalizer⇒Pushout; up-to-iso)
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Properties using ([_]-resp-square; [_]-resp-≅)
open import Categories.Object.Coproduct using (IsCoproduct; Coproduct; IsCoproduct⇒Coproduct; Coproduct⇒IsCoproduct)
open import Categories.Object.Initial using (IsInitial)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
open import Function.Base using (id)
open import Level
module _ {o ℓ e : Level} {𝒞 : Category o ℓ e} where
open Category 𝒞
Coequalizer-resp-≈
: {A B C : Obj}
{f f′ g g′ : A ⇒ B}
{arr : B ⇒ C}
→ f ≈ f′
→ g ≈ g′
→ IsCoequalizer 𝒞 f g arr
→ IsCoequalizer 𝒞 f′ g′ arr
Coequalizer-resp-≈ ≈f ≈g ce = record
{ equality = refl⟩∘⟨ sym ≈f ○ equality ○ refl⟩∘⟨ ≈g
; coequalize = λ { eq → coequalize (refl⟩∘⟨ ≈f ○ eq ○ refl⟩∘⟨ sym ≈g) }
; universal = universal
; unique = unique
}
where
open HomReasoning
open Equiv
open IsCoequalizer ce
IsPushout⇒Pushout
: {A B C D : Obj}
{f : A ⇒ B} {g : A ⇒ C} {i₁ : B ⇒ D} {i₂ : C ⇒ D}
→ IsPushout 𝒞 f g i₁ i₂
→ Pushout 𝒞 f g
IsPushout⇒Pushout isP = record { i₁ = _ ; i₂ = _ ; isPushout = isP }
module _ {o ℓ e : Level} {𝒞 𝒟 : Category o ℓ e} (F : Functor 𝒞 𝒟) where
open Functor F
open Category 𝒞
PreservesCoequalizer : Set (o ⊔ ℓ ⊔ e)
PreservesCoequalizer = {A B C : Obj} {f g : A ⇒ B} {h : B ⇒ C} → IsCoequalizer 𝒞 f g h → IsCoequalizer 𝒟 (F₁ f) (F₁ g) (F₁ h)
PreservesCoproduct : Set (o ⊔ ℓ ⊔ e)
PreservesCoproduct = {A B C : Obj} {i₁ : A ⇒ C} {i₂ : B ⇒ C} → IsCoproduct 𝒞 i₁ i₂ → IsCoproduct 𝒟 (F₁ i₁) (F₁ i₂)
PreservesInitial : Set (o ⊔ ℓ ⊔ e)
PreservesInitial = {A : Obj} → IsInitial 𝒞 A → IsInitial 𝒟 (F₀ A)
PreservesPushouts : Set (o ⊔ ℓ ⊔ e)
PreservesPushouts = {A B C D : Obj} {f : A ⇒ B} {g : A ⇒ C} {i₁ : B ⇒ D} {i₂ : C ⇒ D} → IsPushout 𝒞 f g i₁ i₂ → IsPushout 𝒟 (F₁ f) (F₁ g) (F₁ i₁) (F₁ i₂)
module _ {o ℓ e : Level} (𝒞 𝒟 : FinitelyCocompleteCategory o ℓ e) where
open FinitelyCocompleteCategory using (U)
record IsRightExact (F : Functor (U 𝒞) (U 𝒟)) : Set (o ⊔ ℓ ⊔ e) where
field
F-resp-⊥ : PreservesInitial F
F-resp-+ : PreservesCoproduct F
F-resp-coeq : PreservesCoequalizer F
open FinitelyCocompleteCategory 𝒞 hiding (U)
open Functor F
F-resp-pushout : PreservesPushouts F
F-resp-pushout {A} {B} {C} {D} {f} {g} {i₁} {i₂} P = record
{ commute = [ F ]-resp-square P.commute
; universal = λ { eq → F-P′.universal eq ∘′ F-≅D.from }
; universal∘i₁≈h₁ = assoc′ ○′ refl⟩∘⟨′ [ F ]-resp-square P.universal∘i₁≈h₁ ○′ F-P′.universal∘i₁≈h₁
; universal∘i₂≈h₂ = assoc′ ○′ refl⟩∘⟨′ [ F ]-resp-square P.universal∘i₂≈h₂ ○′ F-P′.universal∘i₂≈h₂
; unique-diagram = λ { eq₁ eq₂ →
insertʳ′ F-≅D.isoˡ ○′
F-P′.unique-diagram
(assoc′ ○′
refl⟩∘⟨′ (Equiv′.sym (insertˡ′ F-≅D.isoˡ ○′ (refl⟩∘⟨′ [ F ]-resp-square P.universal∘i₁≈h₁))) ○′
eq₁ ○′
refl⟩∘⟨′ (insertˡ′ F-≅D.isoˡ ○′ (refl⟩∘⟨′ [ F ]-resp-square P.universal∘i₁≈h₁)) ○′
sym-assoc′)
(assoc′ ○′
refl⟩∘⟨′ (Equiv′.sym (insertˡ′ F-≅D.isoˡ ○′ (refl⟩∘⟨′ [ F ]-resp-square P.universal∘i₂≈h₂))) ○′
eq₂ ○′
refl⟩∘⟨′ (insertˡ′ F-≅D.isoˡ ○′ (refl⟩∘⟨′ [ F ]-resp-square P.universal∘i₂≈h₂)) ○′
sym-assoc′) ⟩∘⟨refl′ ○′
cancelʳ′ F-≅D.isoˡ }
}
where
module P = IsPushout P
cp : Coproduct (U 𝒞) B C
cp = coproduct
open Coproduct cp using (inject₁; inject₂; [_,_]; g-η; []-cong₂) renaming (i₁ to ι₁; i₂ to ι₂; A+B to B+C)
ce : Coequalizer (U 𝒞) (ι₁ ∘ f) (ι₂ ∘ g)
ce = coequalizer (ι₁ ∘ f) (ι₂ ∘ g)
open Coequalizer ce using (equality; coequalize) renaming (arr to i₁-i₂; obj to D′; universal to univ; unique to uniq)
open HomReasoning
open import Categories.Morphism.Reasoning (U 𝒞)
open import Categories.Morphism.Reasoning (U 𝒟) using () renaming (pullʳ to pullʳ′; insertʳ to insertʳ′; cancelʳ to cancelʳ′; insertˡ to insertˡ′; extendˡ to extendˡ′)
import Categories.Morphism as Morphism
open Morphism (U 𝒞) using (_≅_)
open Morphism (U 𝒟) using () renaming (_≅_ to _≅′_)
P′ : IsPushout (U 𝒞) f g (i₁-i₂ ∘ ι₁) (i₁-i₂ ∘ ι₂)
P′ = Pushout.isPushout (Coproduct×Coequalizer⇒Pushout (U 𝒞) cp ce)
open Category (U 𝒟) using () renaming (_∘_ to _∘′_; module HomReasoning to 𝒟-Reasoning; assoc to assoc′; sym-assoc to sym-assoc′; module Equiv to Equiv′)
open 𝒟-Reasoning using () renaming (_○_ to _○′_; refl⟩∘⟨_ to refl⟩∘⟨′_; _⟩∘⟨refl to _⟩∘⟨refl′)
≅D : D ≅ D′
≅D = up-to-iso (U 𝒞) (IsPushout⇒Pushout P) (IsPushout⇒Pushout P′)
F-≅D : F₀ D ≅′ F₀ D′
F-≅D = [ F ]-resp-≅ ≅D
module F-≅D = _≅′_ F-≅D
F-cp : IsCoproduct (U 𝒟) (F₁ ι₁) (F₁ ι₂)
F-cp = F-resp-+ (Coproduct⇒IsCoproduct (U 𝒞) cp)
F-ce : IsCoequalizer (U 𝒟) (F₁ ι₁ ∘′ F₁ f) (F₁ ι₂ ∘′ F₁ g) (F₁ i₁-i₂)
F-ce = Coequalizer-resp-≈ homomorphism homomorphism (F-resp-coeq (Coequalizer.isCoequalizer ce))
F-P′ : IsPushout (U 𝒟) (F₁ f) (F₁ g) (F₁ i₁-i₂ ∘′ F₁ ι₁) (F₁ i₁-i₂ ∘′ F₁ ι₂)
F-P′ = Pushout.isPushout (Coproduct×Coequalizer⇒Pushout (U 𝒟) (IsCoproduct⇒Coproduct (U 𝒟) F-cp) (IsCoequalizer⇒Coequalizer (U 𝒟) F-ce))
module F-P′ = IsPushout F-P′
record RightExactFunctor : Set (o ⊔ ℓ ⊔ e) where
constructor rightexact
field
F : Functor (U 𝒞) (U 𝒟)
isRightExact : IsRightExact F
open Functor F public
open IsRightExact isRightExact public
module _ where
open FinitelyCocompleteCategory using (U)
∘-resp-IsRightExact
: {o ℓ e : Level}
{𝒞 𝒟 ℰ : FinitelyCocompleteCategory o ℓ e}
{F : Functor (U 𝒞) (U 𝒟)}
{G : Functor (U 𝒟) (U ℰ)}
→ IsRightExact 𝒞 𝒟 F
→ IsRightExact 𝒟 ℰ G
→ IsRightExact 𝒞 ℰ (G ∘F F)
∘-resp-IsRightExact F-isRightExact G-isRightExact = record
{ F-resp-⊥ = G.F-resp-⊥ ∘ F.F-resp-⊥
; F-resp-+ = G.F-resp-+ ∘ F.F-resp-+
; F-resp-coeq = G.F-resp-coeq ∘ F.F-resp-coeq
}
where
open Function using (_∘_)
module F = IsRightExact F-isRightExact
module G = IsRightExact G-isRightExact
∘-RightExactFunctor
: {o ℓ e : Level}
→ {A B C : FinitelyCocompleteCategory o ℓ e}
→ RightExactFunctor B C → RightExactFunctor A B → RightExactFunctor A C
∘-RightExactFunctor F G = record
{ F = F.F ∘F G.F
; isRightExact = ∘-resp-IsRightExact G.isRightExact F.isRightExact
}
where
module F = RightExactFunctor F
module G = RightExactFunctor G
idF-RightExact : {o ℓ e : Level} → {𝒞 : FinitelyCocompleteCategory o ℓ e} → IsRightExact 𝒞 𝒞 idF
idF-RightExact = record
{ F-resp-⊥ = id
; F-resp-+ = id
; F-resp-coeq = id
}
idREF : {o ℓ e : Level} → {𝒞 : FinitelyCocompleteCategory o ℓ e} → RightExactFunctor 𝒞 𝒞
idREF = record
{ F = idF
; isRightExact = idF-RightExact
}
|