1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
{-# OPTIONS --without-K --safe #-}
open import Level using (Level; _⊔_; suc)
module Functor.Free.Instance.Monoid {c ℓ : Level} where
import Categories.Object.Monoid as MonoidObject
open import Categories.Category using (Category)
open import Categories.Category.Construction.Monoids using (Monoids)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
open import Categories.Functor using (Functor)
open import Categories.NaturalTransformation using (NaturalTransformation)
open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×; ×-monoidal′)
open import Data.List.Properties using (++-assoc; ++-identityˡ; ++-identityʳ)
open import Data.Opaque.List using ([]ₛ; Listₛ; ++ₛ; mapₛ)
open import Data.Product using (_,_)
open import Data.Setoid using (∣_∣)
open import Function using (_⟶ₛ_; _⟨$⟩_)
open import Functor.Instance.List {c} {ℓ} using (List)
open import NaturalTransformation.Instance.EmptyList {c} {ℓ} using (⊤⇒[])
open import NaturalTransformation.Instance.ListAppend {c} {ℓ} using (++)
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
module Setoids-× = SymmetricMonoidalCategory Setoids-×
module ++ = NaturalTransformation ++
module ⊤⇒[] = NaturalTransformation ⊤⇒[]
open Functor
open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒)
open IsMonoid
-- the functor sending a setoid A to the monoid List A
module _ (X : Setoid c ℓ) where
open Setoid (List.₀ X)
opaque
unfolding []ₛ
++ₛ-assoc
: (x y z : ∣ Listₛ X ∣)
→ ++ₛ ⟨$⟩ (++ₛ ⟨$⟩ (x , y) , z)
≈ ++ₛ ⟨$⟩ (x , ++ₛ ⟨$⟩ (y , z))
++ₛ-assoc x y z = reflexive (++-assoc x y z)
++ₛ-identityˡ
: (x : ∣ Listₛ X ∣)
→ x ≈ ++ₛ ⟨$⟩ ([]ₛ ⟨$⟩ _ , x)
++ₛ-identityˡ x = reflexive (++-identityˡ x)
++ₛ-identityʳ
: (x : ∣ Listₛ X ∣)
→ x ≈ ++ₛ ⟨$⟩ (x , []ₛ ⟨$⟩ _)
++ₛ-identityʳ x = sym (reflexive (++-identityʳ x))
opaque
unfolding ×-monoidal′
ListMonoid : IsMonoid (List.₀ X)
ListMonoid = record
{ μ = ++.η X
; η = ⊤⇒[].η X
; assoc = λ { {(x , y) , z} → ++ₛ-assoc x y z }
; identityˡ = λ { {_ , x} → ++ₛ-identityˡ x }
; identityʳ = λ { {x , _} → ++ₛ-identityʳ x }
}
Listₘ : Setoid c ℓ → Monoid
Listₘ X = record { isMonoid = ListMonoid X }
opaque
unfolding ListMonoid
mapₘ
: {Aₛ Bₛ : Setoid c ℓ}
(f : Aₛ ⟶ₛ Bₛ)
→ Monoid⇒ (Listₘ Aₛ) (Listₘ Bₛ)
mapₘ f = record
{ arr = List.₁ f
; preserves-μ = λ {x,y} → ++.sym-commute f {x,y}
; preserves-η = ⊤⇒[].sym-commute f
}
module U = Category Setoids-×.U
open Monoid⇒ using (arr)
open import Function.Construct.Identity using () renaming (function to Id)
open import Function.Construct.Composition using () renaming (function to compose)
opaque
unfolding mapₘ
Free-identity : {X : Setoid c ℓ} → arr (mapₘ (Id X)) U.≈ U.id
Free-identity = List.identity
Free-homomorphism : {X Y Z : Setoid c ℓ} {f : X ⟶ₛ Y} {g : Y ⟶ₛ Z} → arr (mapₘ (compose f g)) U.≈ arr (mapₘ g) U.∘ arr (mapₘ f)
Free-homomorphism = List.homomorphism
Free-resp-≈
: {X Y : Setoid c ℓ}
{f g : X ⟶ₛ Y}
(let module Y = Setoid Y)
→ (∀ {x} → f ⟨$⟩ x Y.≈ g ⟨$⟩ x)
→ arr (mapₘ f) U.≈ arr (mapₘ g)
Free-resp-≈ = List.F-resp-≈
Free : Functor (Setoids c ℓ) (Monoids Setoids-×.monoidal)
Free .F₀ = Listₘ
Free .F₁ = mapₘ
Free .identity = Free-identity
Free .homomorphism = Free-homomorphism
Free .F-resp-≈ = Free-resp-≈
|