aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/Cospan/Stack.agda
blob: b7664dcee7bdb26929d232630b212b8c9593d3e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{-# OPTIONS --without-K --safe #-}

open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)

module Functor.Instance.Cospan.Stack {o  e} (𝒞 : FinitelyCocompleteCategory o  e) where

import Categories.Diagram.Pushout as DiagramPushout
import Categories.Diagram.Pushout.Properties as PushoutProperties
import Categories.Morphism as Morphism
import Categories.Morphism.Reasoning as ⇒-Reasoning

open import Categories.Category.Core using (Category)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Category.Instance.Cospans 𝒞 using (Cospan; Cospans; Same; id-Cospan; compose)
open import Category.Instance.FinitelyCocompletes {o} {} {e} using () renaming (_×_ to _×′_)
open import Category.Instance.Properties.FinitelyCocompletes {o} {} {e} using (-+-; FinitelyCocompletes-CC)
open import Data.Product.Base using (Σ; _,_; _×_; proj₁; proj₂)
open import Functor.Exact using (RightExactFunctor; IsPushout⇒Pushout)
open import Level using (Level; _⊔_; suc)

module 𝒞 = FinitelyCocompleteCategory 𝒞
module Cospans = Category Cospans

open 𝒞 using (U; _+_; _+₁_; pushout; coproduct; [_,_]; ⊥; cocartesianCategory; monoidal)
open Category U
open DiagramPushout U using (Pushout)
open PushoutProperties U using (up-to-iso)

module 𝒞×𝒞 = FinitelyCocompleteCategory (𝒞 ×′ 𝒞)
open 𝒞×𝒞 using () renaming (pushout to pushout′; U to U×U)
open DiagramPushout U×U using () renaming (Pushout to Pushout′)

open import Categories.Category.Monoidal.Utilities monoidal using (_⊗ᵢ_)

together :  {A A′ B B′ : Obj}  Cospan A B  Cospan A′ B′  Cospan (A + A′) (B + B′)
together A⇒B A⇒B′ = record
    { f₁ = f₁ A⇒B +₁ f₁ A⇒B′
    ; f₂ = f₂ A⇒B +₁ f₂ A⇒B′
    }
  where
    open Cospan

id⊗id≈id : {A B : Obj}  Same (together (id-Cospan {A}) (id-Cospan {B})) (id-Cospan {A + B})
id⊗id≈id {A} {B} = record
    { ≅N = ≅.refl
    ; from∘f₁≈f₁′ = from∘f≈f′
    ; from∘f₂≈f₂′ = from∘f≈f′
    }
  where
    open Morphism U using (module ≅)
    open HomReasoning
    open 𝒞 using (+-η; []-cong₂)
    open coproduct {A} {B} using (i₁; i₂)
    from∘f≈f′ : id  [ i₁  id , i₂  id ] 𝒞.≈ id
    from∘f≈f′ = begin
        id  [ i₁  id , i₂  id ]  ≈⟨ identityˡ         [ i₁  id , i₂  id ]       ≈⟨ []-cong₂ identityʳ identityʳ         [ i₁ , i₂ ]                 ≈⟨ +-η         id                          homomorphism
    : {A A′ B B′ C C′ : Obj}
     (A⇒B : Cospan A B)
     (B⇒C : Cospan B C)
     (A⇒B′ : Cospan A′ B′)
     (B⇒C′ : Cospan B′ C′)
     Same (together (compose A⇒B B⇒C) (compose A⇒B′ B⇒C′)) (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′) )
homomorphism A⇒B B⇒C A⇒B′ B⇒C′ = record
    { ≅N = ≅N
    ; from∘f₁≈f₁′ = from∘f₁≈f₁′
    ; from∘f₂≈f₂′ = from∘f₂≈f₂′
    }
  where
    open Cospan
    open Pushout
    open HomReasoning
    open ⇒-Reasoning U
    open Morphism U using (_≅_)
    open _≅_
    open 𝒞 using (+₁∘+₁)
    module -+- = RightExactFunctor (-+- {𝒞})
    P₁ = pushout (f₂ A⇒B) (f₁ B⇒C)
    P₂ = pushout (f₂ A⇒B′) (f₁ B⇒C′)
    module P₁ = Pushout P₁
    module P₂ = Pushout P₂
    P₁×P₂ = pushout′ (f₂ A⇒B , f₂ A⇒B′) (f₁ B⇒C , f₁ B⇒C′)
    module P₁×P₂ = Pushout′ P₁×P₂
    P₃ = pushout (f₂ A⇒B +₁ f₂ A⇒B′) (f₁ B⇒C +₁ f₁ B⇒C′)
    P₃′ = IsPushout⇒Pushout (-+-.F-resp-pushout P₁×P₂.isPushout)
    ≅N : Q P₃′  Q P₃
    ≅N = up-to-iso P₃′ P₃
    from∘f₁≈f₁′ : from ≅N  (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′))  f₁ (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′))
    from∘f₁≈f₁′ = begin
        from ≅N  (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′))  ≈⟨ Equiv.refl         from ≅N  ((i₁ P₁  f₁ A⇒B) +₁ (i₁ P₂  f₁ A⇒B′))           ≈⟨ refl⟩∘⟨ +₁∘+₁         from ≅N  (i₁ P₁ +₁ i₁ P₂)  (f₁ A⇒B +₁ f₁ A⇒B′)            ≈⟨ Equiv.refl         from ≅N  i₁ P₃′  f₁ (together A⇒B A⇒B′)                   ≈⟨ pullˡ (universal∘i₁≈h₁ P₃′)         i₁ P₃  f₁ (together A⇒B A⇒B′)                                  from∘f₂≈f₂′ : from ≅N  (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′))  f₂ (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′))
    from∘f₂≈f₂′ = begin
        from ≅N  (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′))  ≈⟨ Equiv.refl         from ≅N  ((i₂ P₁  f₂ B⇒C) +₁ (i₂ P₂  f₂ B⇒C′))           ≈⟨ refl⟩∘⟨ +₁∘+₁         from ≅N  (i₂ P₁ +₁ i₂ P₂)  (f₂ B⇒C +₁ f₂ B⇒C′)            ≈⟨ Equiv.refl         from ≅N  i₂ P₃′  f₂ (together B⇒C B⇒C′)                   ≈⟨ pullˡ (universal∘i₂≈h₂ P₃′)         i₂ P₃  f₂ (together B⇒C B⇒C′)                              ⊗-resp-≈
    : {A A′ B B′ : Obj}
      {f f′ : Cospan A B}
      {g g′ : Cospan A′ B′}
     Same f f′
     Same g g′
     Same (together f g) (together f′ g′)
⊗-resp-≈ {_} {_} {_} {_} {f} {f′} {g} {g′} ≈f ≈g = record
    { ≅N = ≈f.≅N ⊗ᵢ ≈g.≅N
    ; from∘f₁≈f₁′ = from∘f₁≈f₁′
    ; from∘f₂≈f₂′ = from∘f₂≈f₂′
    }
  where
    open 𝒞 using (-+-)
    module f = Same ≈f
    module g = Same ≈g
    open HomReasoning
    open Cospan
    open 𝒞 using (+₁-cong₂; +₁∘+₁)
    from∘f₁≈f₁′ : (≈f.from +₁ ≈g.from)  (f₁ f +₁ f₁ g)  f₁ f′ +₁ f₁ g′
    from∘f₁≈f₁′ = begin 
        (≈f.from +₁ ≈g.from)  (f₁ f +₁ f₁ g) ≈⟨ +₁∘+₁         (≈f.from  f₁ f) +₁ (≈g.from  f₁ g)  ≈⟨ +₁-cong₂ (≈f.from∘f₁≈f₁′) (≈g.from∘f₁≈f₁′)         f₁ f′ +₁ f₁ g′                            from∘f₂≈f₂′ : (≈f.from +₁ ≈g.from)  (f₂ f +₁ f₂ g)  f₂ f′ +₁ f₂ g′
    from∘f₂≈f₂′ = begin 
        (≈f.from +₁ ≈g.from)  (f₂ f +₁ f₂ g) ≈⟨ +₁∘+₁         (≈f.from  f₂ f) +₁ (≈g.from  f₂ g)  ≈⟨ +₁-cong₂ (≈f.from∘f₂≈f₂′) (≈g.from∘f₂≈f₂′)         f₂ f′ +₁ f₂ g′                         : Bifunctor Cospans Cospans Cospans
⊗ = record
    { F₀ = λ { (A , A′)  A + A′ }
    ; F₁ = λ { (f , g)  together f g }
    ; identity = λ { {x , y}  id⊗id≈id {x} {y} }
    ; homomorphism = λ { {_} {_} {_} {A⇒B , A⇒B′} {B⇒C , B⇒C′}  homomorphism A⇒B B⇒C A⇒B′ B⇒C′ }
    ; F-resp-≈ = λ { (≈f , ≈g)  ⊗-resp-≈ ≈f ≈g }
    }