aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/DecoratedCospan/Embed.agda
blob: 4595a8f1e585feb06310c6d2efafe04928bdf22e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
{-# OPTIONS --without-K --safe #-}

open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
open import Categories.Functor.Monoidal.Symmetric using (module Lax)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)

open Lax using (SymmetricMonoidalFunctor)
open FinitelyCocompleteCategory
  using ()
  renaming (symmetricMonoidalCategory to smc)

module Functor.Instance.DecoratedCospan.Embed
    {o o′  ℓ′ e e′}
    (𝒞 : FinitelyCocompleteCategory o  e)
    {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′}
    (F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where

import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
import Categories.Diagram.Pushout.Properties as PushoutProperties
import Categories.Morphism.Reasoning as ⇒-Reasoning
import Category.Diagram.Pushout as Pushout′
import Functor.Instance.Cospan.Embed 𝒞 as Embed

open import Categories.Category using (Category; _[_,_]; _[_≈_]; _[_∘_])
open import Categories.Category.Monoidal.Properties using (coherence-inv₃)
open import Categories.Functor.Properties using ([_]-resp-≅)
open import Category.Instance.Cospans 𝒞 using (Cospans)
open import Category.Instance.DecoratedCospans 𝒞 F using (DecoratedCospans)

import Categories.Diagram.Pushout as DiagramPushout
import Categories.Diagram.Pushout.Properties as PushoutProperties
import Categories.Morphism as Morphism

open import Categories.Category.Cocartesian using (module CocartesianMonoidal)
open import Categories.Category.Monoidal.Utilities using (module Shorthands)
open import Categories.Functor using (Functor; _∘F_)
open import Data.Product.Base using (_,_)
open import Function.Base using () renaming (id to idf)
open import Functor.Instance.DecoratedCospan.Stack using ()

module 𝒞 = FinitelyCocompleteCategory 𝒞
module 𝒟 = SymmetricMonoidalCategory 𝒟
module F = SymmetricMonoidalFunctor F
module Cospans = Category Cospans
module DecoratedCospans = Category DecoratedCospans
module mc𝒞 = CocartesianMonoidal 𝒞.U 𝒞.cocartesian

open import Functor.Instance.Decorate 𝒞 F using (Decorate; Decorate-resp-⊗)

private
  variable
    A B C D E H : 𝒞.Obj
    f : 𝒞.U [ A , B ]
    g : 𝒞.U [ C , D ]
    h : 𝒞.U [ E , H ]

L : Functor 𝒞.U DecoratedCospans
L = Decorate ∘F Embed.L

R : Functor 𝒞.op DecoratedCospans
R = Decorate ∘F Embed.R

B₁ : 𝒞.U [ A , C ]  𝒞.U [ B , C ]  𝒟.U [ 𝒟.unit , F.F₀ C ]  DecoratedCospans [ A , B ]
B₁ f g s = record
    { cospan = Embed.B₁ f g
    ; decoration = s
    }

module _ where

  module L = Functor L
  module R = Functor R

  module Codiagonal where

    open mc𝒞 using (unitorˡ; unitorʳ; +-monoidal) public
    open unitorˡ using () renaming (to to λ⇐′) public
    open unitorʳ using () renaming (to to ρ⇐′) public
    open 𝒞 using (U; _+_; []-cong₂; []∘+₁; ∘-distribˡ-[]; inject₁; inject₂; ¡)
      renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
    open Category U
    open Equiv
    open HomReasoning
    open ⇒-Reasoning 𝒞.U

    μ : {X : Obj}  X + X  X
    μ = [ id , id ]′

    μ∘+ : {X Y Z : Obj} {f : X  Z} {g : Y  Z}  [ f , g ]′  μ  f +₁ g
    μ∘+ = []-cong₂ (sym identityˡ) (sym identityˡ)  sym []∘+₁

    μ∘¡ˡ : {X : Obj}  μ  ¡ +₁ id  λ⇐′  id {X}
    μ∘¡ˡ = begin
        μ  ¡ +₁ id  λ⇐′ ≈⟨ pullˡ (sym μ∘+)         [ ¡ , id ]′  λ⇐′ ≈⟨ inject₂         id                    μ∘¡ʳ : {X : Obj}  μ  id +₁ ¡  ρ⇐′  id {X}
    μ∘¡ʳ = begin
        μ  id +₁ ¡  ρ⇐′ ≈⟨ pullˡ (sym μ∘+)         [ id , ¡ ]′  ρ⇐′ ≈⟨ inject₁         id                    μ-natural : {X Y : Obj} {f : X  Y}  f  μ  μ  f +₁ f
    μ-natural = ∘-distribˡ-[]  []-cong₂ (identityʳ  sym identityˡ) (identityʳ  sym identityˡ)  sym []∘+₁

  B∘L : {A B M C : 𝒞.Obj}
       {f : 𝒞.U [ A , B ]}
       {g : 𝒞.U [ B , M ]}
       {h : 𝒞.U [ C , M ]}
       {s : 𝒟.U [ 𝒟.unit , F.₀ M ]}
       DecoratedCospans [ DecoratedCospans [ B₁ g h s  L.₁ f ]  B₁ (𝒞.U [ g  f ]) h s ]
  B∘L {A} {B} {M} {C} {f} {g} {h} {s} = record
      { cospans-≈ = Embed.B∘L
      ; same-deco = same-deco
      }
    where

      module _ where
        open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
        open 𝒞 using (U)
        open Category U
        open mc𝒞 using (unitorˡ; unitorˡ-commute-to; +-monoidal) public
        open unitorˡ using () renaming (to to λ⇐′) public
        open ⊗-Reasoning +-monoidal
        open ⇒-Reasoning 𝒞.U
        open Equiv

        open Pushout′ 𝒞.U using (pushout-id-g)
        open PushoutProperties 𝒞.U using (up-to-iso)
        open DiagramPushout 𝒞.U using (Pushout)
        P P′ : Pushout 𝒞.id g
        P = pushout 𝒞.id g
        P′ = pushout-id-g
        module P = Pushout P
        module P = Pushout P′
        open Morphism 𝒞.U using (_≅_)
        open _≅_ using (from)
        open P using (i₁ ; i₂; universal∘i₂≈h₂) public

        open Codiagonal using (μ; μ-natural; μ∘+; μ∘¡ˡ)

         : P.Q  M
         = up-to-iso P P′ .from

        ≅∘[]∘¡+id : ((  [ i₁ , i₂ ]′)  ¡ +₁ id)  λ⇐′  id
        ≅∘[]∘¡+id = begin
          ((  [ i₁ , i₂ ]′)  ¡ +₁ id)  λ⇐′  ≈⟨ assoc²αε             [ i₁ , i₂ ]′  ¡ +₁ id  λ⇐′      ≈⟨ refl⟩∘⟨ pushˡ μ∘+             μ  i₁ +₁ i₂  ¡ +₁ id  λ⇐′      ≈⟨ refl⟩∘⟨ pull-center (sym split₁ʳ)             μ  (i₁  ¡) +₁ i₂  λ⇐′          ≈⟨ extendʳ μ-natural           μ   +₁   (i₁  ¡) +₁ i₂  λ⇐′     ≈⟨ pull-center (sym ⊗-distrib-over-∘)           μ  (  i₁  ¡) +₁ (  i₂)  λ⇐′    ≈⟨ refl⟩∘⟨ sym (¡-unique (  i₁  ¡)) ⟩⊗⟨ universal∘i₂≈h₂ ⟩∘⟨refl           μ  ¡ +₁ id  λ⇐′                     ≈⟨ μ∘¡ˡ           id                                          open 𝒟 using (U; monoidal; _⊗₁_; unitorˡ-commute-from) renaming (module unitorˡ to λ-)
      open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
      open Category U
      open Equiv
      open ⇒-Reasoning U
      open ⊗-Reasoning monoidal
      open F.⊗-homo using () renaming (η to φ; commute to φ-commute)
      open F using (F₁; ε)
      open Shorthands monoidal

      same-deco : F₁   F₁ [ i₁ , i₂ ]′  φ (B , M)  (F₁ ¡  ε) ⊗₁ s  ρ⇐  s
      same-deco = begin
          F₁   F₁ [ i₁ , i₂ ]′  φ (B , M)  (F₁ ¡  ε) ⊗₁ s  ρ⇐                     ≈⟨ pullˡ (sym F.homomorphism)           F₁ ( 𝒞.∘ [ i₁ , i₂ ]′)  φ (B , M)  (F₁ ¡  ε) ⊗₁ s  ρ⇐                    ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ           F₁ ( 𝒞.∘ [ i₁ , i₂ ]′)  φ (B , M)  F₁ ¡ ⊗₁ id  ε ⊗₁ s  ρ⇐                ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ sym F.identity ⟩∘⟨refl           F₁ ( 𝒞.∘ [ i₁ , i₂ ]′)  φ (B , M)  F₁ ¡ ⊗₁ F₁ 𝒞.id  ε ⊗₁ s  ρ⇐           ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (¡ , 𝒞.id))           F₁ ( 𝒞.∘ [ i₁ , i₂ ]′)  F₁ (¡ +₁ 𝒞.id)  φ ( , M)  ε ⊗₁ s  ρ⇐            ≈⟨ pullˡ (sym F.homomorphism)           F₁ (( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id)  φ ( , M)  ε ⊗₁ s  ρ⇐             ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₁₂           F₁ (( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id)  φ ( , M)  ε ⊗₁ id  id ⊗₁ s  ρ⇐  ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorˡ) F.unitaryˡ)           F₁ (( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id)  F₁ λ⇐′  λ  id ⊗₁ s  ρ⇐          ≈⟨ pullˡ (sym F.homomorphism)           F₁ ((( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′)  λ  id ⊗₁ s  ρ⇐         ≈⟨ refl⟩∘⟨ extendʳ unitorˡ-commute-from           F₁ ((( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′)  s  λ  ρ⇐               ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ coherence-inv₃ monoidal           F₁ ((( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′)  s  λ  λ               ≈⟨ refl⟩∘⟨ (sym-assoc  cancelʳ λ-.isoʳ)           F₁ ((( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′)  s                         ≈⟨ elimˡ (F.F-resp-≈ ≅∘[]∘¡+id  F.identity)           s                                                                               R∘B : {A N B C : 𝒞.Obj}
       {f : 𝒞.U [ A , N ]}
       {g : 𝒞.U [ B , N ]}
       {h : 𝒞.U [ C , B ]}
       {s : 𝒟.U [ 𝒟.unit , F.₀ N ]}
       DecoratedCospans [ DecoratedCospans [ R.₁ h  B₁ f g s ]  B₁ f (𝒞.U [ g  h ]) s ]
  R∘B {A} {N} {B} {C} {f} {g} {h} {s} = record
      { cospans-≈ = Embed.R∘B
      ; same-deco = same-deco
      }
    where

      module _ where
        open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
        open 𝒞 using (U)
        open Category U
        open mc𝒞 using (unitorʳ; unitorˡ; unitorˡ-commute-to; +-monoidal) public
        open unitorˡ using () renaming (to to λ⇐′) public
        open unitorʳ using () renaming (to to ρ⇐′) public
        open ⊗-Reasoning +-monoidal
        open ⇒-Reasoning 𝒞.U
        open Equiv

        open Pushout′ 𝒞.U using (pushout-f-id)
        open PushoutProperties 𝒞.U using (up-to-iso)
        open DiagramPushout 𝒞.U using (Pushout)
        P P′ : Pushout g 𝒞.id
        P = pushout g 𝒞.id
        P′ = pushout-f-id
        module P = Pushout P
        module P = Pushout P′
        open Morphism 𝒞.U using (_≅_)
        open _≅_ using (from)
        open P using (i₁ ; i₂; universal∘i₁≈h₁) public

        open Codiagonal using (μ; μ-natural; μ∘+; μ∘¡ʳ)

         : P.Q  N
         = up-to-iso P P′ .from

        ≅∘[]∘id+¡ : ((  [ i₁ , i₂ ]′)  id +₁ ¡)  ρ⇐′  id
        ≅∘[]∘id+¡ = begin
          ((  [ i₁ , i₂ ]′)  id +₁ ¡)  ρ⇐′  ≈⟨ assoc²αε             [ i₁ , i₂ ]′  id +₁ ¡  ρ⇐′      ≈⟨ refl⟩∘⟨ pushˡ μ∘+             μ  i₁ +₁ i₂  id +₁ ¡  ρ⇐′      ≈⟨ refl⟩∘⟨ pull-center merge₂ʳ             μ  i₁ +₁ (i₂  ¡)  ρ⇐′          ≈⟨ extendʳ μ-natural           μ   +₁   i₁ +₁ (i₂  ¡)  ρ⇐′     ≈⟨ pull-center (sym ⊗-distrib-over-∘)           μ  (  i₁) +₁ (  i₂  ¡)  ρ⇐′    ≈⟨ refl⟩∘⟨ universal∘i₁≈h₁ ⟩⊗⟨ sym (¡-unique (  i₂  ¡)) ⟩∘⟨refl           μ  id +₁ ¡  ρ⇐′                     ≈⟨ μ∘¡ʳ           id                                          open 𝒟 using (U; monoidal; _⊗₁_; unitorʳ-commute-from) renaming (module unitorˡ to λ-; module unitorʳ to ρ)
      open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
      open Category U
      open Equiv
      open ⇒-Reasoning U
      open ⊗-Reasoning monoidal
      open F.⊗-homo using () renaming (η to φ; commute to φ-commute)
      open F using (F₁; ε)
      open Shorthands monoidal

      same-deco : F₁   F₁ [ i₁ , i₂ ]′  φ (N , B)  s ⊗₁ (F₁ ¡  ε)  ρ⇐  s
      same-deco = begin
          F₁   F₁ [ i₁ , i₂ ]′  φ (N , B)  s ⊗₁ (F₁ ¡  ε)  ρ⇐                        ≈⟨ pullˡ (sym F.homomorphism)           F₁ ( 𝒞.∘ [ i₁ , i₂ ]′)  φ (N , B)  s ⊗₁ (F₁ ¡  ε)  ρ⇐                       ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ           F₁ ( 𝒞.∘ [ i₁ , i₂ ]′)  φ (N , B)  id ⊗₁ F₁ ¡  s ⊗₁ ε  ρ⇐                   ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym F.identity ⟩⊗⟨refl ⟩∘⟨refl           F₁ ( 𝒞.∘ [ i₁ , i₂ ]′)  φ (N , B)  F₁ 𝒞.id ⊗₁ F₁ ¡  s ⊗₁ ε  ρ⇐              ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (𝒞.id , ¡))           F₁ ( 𝒞.∘ [ i₁ , i₂ ]′)  F₁ (𝒞.id +₁ ¡)  φ (N , )  s ⊗₁ ε  ρ⇐               ≈⟨ pullˡ (sym F.homomorphism)           F₁ (( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡)  φ (N , )  s ⊗₁ ε  ρ⇐                ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₂₁           F₁ (( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡)  φ (N , )  id ⊗₁ ε  s ⊗₁ id  ρ⇐     ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorʳ) F.unitaryʳ)           F₁ (( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡)  F₁ ρ⇐′  ρ⇒  s ⊗₁ id  ρ⇐             ≈⟨ pullˡ (sym F.homomorphism)           F₁ ((( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) 𝒞.∘ ρ⇐′)  ρ⇒  s ⊗₁ id  ρ⇐            ≈⟨ refl⟩∘⟨ extendʳ unitorʳ-commute-from           F₁ ((( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) 𝒞.∘ ρ⇐′)  s  ρ⇒  ρ⇐                  ≈⟨ refl⟩∘⟨ (sym-assoc  cancelʳ ρ.isoʳ)           F₁ ((( 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) 𝒞.∘ ρ⇐′)  s                            ≈⟨ elimˡ (F.F-resp-≈ ≅∘[]∘id+¡  F.identity)           s                                                                                  open Morphism 𝒞.U using (_≅_)
  open _≅_

  ≅-L-R : (X≅Y : A  B)  DecoratedCospans [ L.₁ (to X≅Y)  R.₁ (from X≅Y) ]
  ≅-L-R X≅Y = Decorate.F-resp-≈ (Embed.≅-L-R X≅Y)
    where
      module Decorate = Functor Decorate

  module ⊗ = Functor ( 𝒞 F)
  open 𝒞 using (_+₁_)

  L-resp-⊗ : DecoratedCospans [ L.₁ (f +₁ g)  ⊗.₁ (L.₁ f , L.₁ g) ]
  L-resp-⊗ = Decorate.F-resp-≈ Embed.L-resp-⊗  Decorate-resp-⊗
    where
      module Decorate = Functor Decorate
      open DecoratedCospans.HomReasoning