blob: 05db34938e0b177f1e65ea524f7494d964ceb012 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
{-# OPTIONS --without-K --safe #-}
open import Level using (Level; _⊔_)
module Functor.Instance.List {c ℓ : Level} where
import Data.List as List
import Data.List.Properties as ListProps
import Data.List.Relation.Binary.Pointwise as PW
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
open import Data.Setoid using (∣_∣)
open import Function.Base using (_∘_; id)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Relation.Binary using (Setoid)
open Functor
open Setoid
open Func
private
variable
A B C : Setoid c ℓ
-- the List functor takes a carrier A to lists of A
-- and the equivalence on A to pointwise equivalence on lists of A
Listₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
Listₛ = PW.setoid
-- List on morphisms is the familiar map operation
-- which applies the same function to every element of a list
mapₛ : A ⟶ₛ B → Listₛ A ⟶ₛ Listₛ B
mapₛ f .to = List.map (to f)
mapₛ f .cong = PW.map⁺ (to f) (to f) ∘ PW.map (cong f)
map-id : (xs : ∣ Listₛ A ∣) → PW.Pointwise (_≈_ A) (List.map id xs) xs
map-id {A} = PW.map (reflexive A) ∘ PW.≡⇒Pointwise-≡ ∘ ListProps.map-id
List-homo
: (f : A ⟶ₛ B)
(g : B ⟶ₛ C)
→ (xs : ∣ Listₛ A ∣)
→ PW.Pointwise (_≈_ C) (List.map (to g ∘ to f) xs) (List.map (to g) (List.map (to f) xs))
List-homo {C = C} f g = PW.map (reflexive C) ∘ PW.≡⇒Pointwise-≡ ∘ ListProps.map-∘
List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
List .F₀ = Listₛ
List .F₁ = mapₛ
List .identity {A} {xs} = map-id {A} xs
List .homomorphism {f = f} {g} {xs} = List-homo f g xs
List .F-resp-≈ {A} {B} {f} {g} f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)
|