blob: ceb73e1fdceba0b245eebeaf5e8a16e23f97b306 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
{-# OPTIONS --without-K --safe #-}
open import Level using (Level; _⊔_)
module Functor.Instance.List {c ℓ : Level} where
import Data.List.Properties as ListProps
import Data.List.Relation.Binary.Pointwise as PW
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
open import Data.Setoid using (∣_∣; _⇒ₛ_)
open import Function.Base using (_∘_; id)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Relation.Binary using (Setoid)
open Functor
open Setoid using (reflexive)
open Func
open import Data.Opaque.List as List hiding (List)
private
variable
A B C : Setoid c ℓ
open import Function.Construct.Identity using () renaming (function to Id)
open import Function.Construct.Setoid using (_∙_)
opaque
unfolding List.List
map-id
: (xs : ∣ Listₛ A ∣)
→ (open Setoid (Listₛ A))
→ mapₛ (Id _) ⟨$⟩ xs ≈ xs
map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id
List-homo
: (f : A ⟶ₛ B)
(g : B ⟶ₛ C)
→ (xs : ∣ Listₛ A ∣)
→ (open Setoid (Listₛ C))
→ mapₛ (g ∙ f) ⟨$⟩ xs ≈ mapₛ g ⟨$⟩ (mapₛ f ⟨$⟩ xs)
List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘
List-resp-≈
: (f g : A ⟶ₛ B)
→ (let open Setoid (A ⇒ₛ B) in f ≈ g)
→ (let open Setoid (Listₛ A ⇒ₛ Listₛ B) in mapₛ f ≈ mapₛ g)
List-resp-≈ f g f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)
-- the List functor takes a carrier A to lists of A
-- and the equivalence on A to pointwise equivalence on lists of A
-- List on morphisms is the familiar map operation
-- which applies the same function to every element of a list
List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
List .F₀ = List.Listₛ
List .F₁ = List.mapₛ
List .identity {_} {xs} = map-id xs
List .homomorphism {f = f} {g} {xs} = List-homo f g xs
List .F-resp-≈ {f = f} {g} f≈g = List-resp-≈ f g f≈g
|