blob: 0adb1df89d4998569ccea2c935a4ccbbd611abfc (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
{-# OPTIONS --without-K --safe #-}
open import Level using (Level; _⊔_)
module Functor.Instance.Multiset {c ℓ : Level} where
import Data.List as List
import Data.List.Properties as ListProps
import Data.List.Relation.Binary.Pointwise as PW
open import Data.List.Relation.Binary.Permutation.Setoid using (↭-setoid; ↭-reflexive-≋)
open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
open import Data.Setoid using (∣_∣)
open import Function.Base using (_∘_; id)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Relation.Binary using (Setoid)
open Functor
open Setoid using (reflexive)
open Func
private
variable
A B C : Setoid c ℓ
-- the Multiset functor takes a carrier A to lists of A
-- and the equivalence on A to permutation equivalence on lists of A
Multisetₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
Multisetₛ x = ↭-setoid x
-- Multiset on morphisms applies the same function to every element of a multiset
mapₛ : A ⟶ₛ B → Multisetₛ A ⟶ₛ Multisetₛ B
mapₛ f .to = List.map (to f)
mapₛ {A} {B} f .cong = map⁺ A B (cong f)
map-id
: (xs : ∣ Multisetₛ A ∣)
→ (open Setoid (Multisetₛ A))
→ List.map id xs ≈ xs
map-id {A} = reflexive (Multisetₛ A) ∘ ListProps.map-id
Multiset-homo
: (f : A ⟶ₛ B)
(g : B ⟶ₛ C)
→ (xs : ∣ Multisetₛ A ∣)
→ (open Setoid (Multisetₛ C))
→ List.map (to g ∘ to f) xs ≈ List.map (to g) (List.map (to f) xs)
Multiset-homo {C = C} f g = reflexive (Multisetₛ C) ∘ ListProps.map-∘
Multiset : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
Multiset .F₀ = Multisetₛ
Multiset .F₁ = mapₛ
Multiset .identity {A} {xs} = map-id {A} xs
Multiset .homomorphism {f = f} {g} {xs} = Multiset-homo f g xs
Multiset .F-resp-≈ {A} {B} {f} {g} f≈g = ↭-reflexive-≋ B (PW.map⁺ (to f) (to g) (PW.refl f≈g))
|