aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/Nat/Preimage.agda
blob: 7da00f43d53cbab176c0a07effc7a4365e101ca1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
{-# OPTIONS --without-K --safe #-}

module Functor.Instance.Nat.Preimage where

open import Categories.Category.Instance.Nat using (Natop)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
open import Data.Fin.Base using (Fin)
open import Data.Bool.Base using (Bool)
open import Data.Nat.Base using ()
open import Data.Subset.Functional using (Subset)
open import Data.Vec.Functional.Relation.Binary.Equality.Setoid using (≋-setoid)
open import Function.Base using (id; _∘_)
open import Function.Bundles using (Func; _⟶ₛ_)
open import Function.Construct.Identity using () renaming (function to Id)
open import Function.Construct.Setoid using (setoid; _∙_)
open import Level using (0)
open import Relation.Binary using (Rel; Setoid)
open import Relation.Binary.PropositionalEquality as  using (_≗_)

open Functor
open Func

_≈_ : {X Y : Setoid 0 0}  Rel (X ⟶ₛ Y) 0ℓ
_≈_ {X} {Y} = Setoid._≈_ (setoid X Y)
infixr 4 _≈_

private
  variable A B C : -- action on objects (Subset n)
Subsetₛ :   Setoid 0 0ℓ
Subsetₛ = ≋-setoid (≡.setoid Bool)

-- action of Preimage on morphisms (contravariant)
Preimage₁ : (Fin A  Fin B)  Subsetₛ B ⟶ₛ Subsetₛ A
to (Preimage₁ f) i = i  f
cong (Preimage₁ f) x≗y = x≗y  f

-- Preimage respects identity
Preimage-identity : Preimage₁ id  Id (Subsetₛ A)
Preimage-identity {A} = Setoid.refl (Subsetₛ A)

-- Preimage flips composition
Preimage-homomorphism
    : {A B C : }
      (f : Fin A  Fin B)
      (g : Fin B  Fin C)
     Preimage₁ (g  f)  Preimage₁ f  Preimage₁ g
Preimage-homomorphism {A} _ _ = Setoid.refl (Subsetₛ A)

-- Preimage respects equality
Preimage-resp-≈
    : {f g : Fin A  Fin B}
     f  g
     Preimage₁ f  Preimage₁ g
Preimage-resp-≈ f≗g {v} = ≡.cong v  f≗g

-- the Preimage functor
Preimage : Functor Natop (Setoids 0 0)
F₀ Preimage = Subsetₛ
F₁ Preimage = Preimage₁
identity Preimage = Preimage-identity
homomorphism Preimage {f = f} {g} {v} = Preimage-homomorphism g f {v}
F-resp-≈ Preimage = Preimage-resp-≈