aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/Nat/Push.agda
blob: 53d0bef9acb61c049b29658a6e6c54985e0a2eb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
{-# OPTIONS --without-K --safe #-}

module Functor.Instance.Nat.Push where

open import Categories.Functor using (Functor)
open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Data.Circuit.Merge using (merge; merge-cong₁; merge-cong₂; merge-⁅⁆; merge-preimage)
open import Data.Fin.Base using (Fin)
open import Data.Fin.Preimage using (preimage; preimage-cong₁)
open import Data.Nat.Base using ()
open import Data.Subset.Functional using (⁅_⁆)
open import Function.Base using (id; _∘_)
open import Function.Bundles using (Func; _⟶ₛ_)
open import Function.Construct.Identity using () renaming (function to Id)
open import Function.Construct.Setoid using (setoid; _∙_)
open import Level using (0)
open import Relation.Binary using (Rel; Setoid)
open import Relation.Binary.PropositionalEquality as  using (_≗_)
open import Data.Circuit.Value using (Value)
open import Data.System.Values Value using (Values)

open Func
open Functor

private
  variable A B C : _≈_ : {X Y : Setoid 0 0}  Rel (X ⟶ₛ Y) 0ℓ
_≈_ {X} {Y} = Setoid._≈_ (setoid X Y)
infixr 4 _≈_

-- action of Push on objects is Values n (Vector Value n)

-- action of Push on morphisms (covariant)
Push₁ : (Fin A  Fin B)  Values A ⟶ₛ Values B
to (Push₁ f) v = merge v  preimage f  ⁅_⁆
cong (Push₁ f) x≗y = merge-cong₁ x≗y  preimage f  ⁅_⁆

-- Push respects identity
Push-identity : Push₁ id  Id (Values A)
Push-identity {_} {v} = merge-⁅⁆ v

-- Push respects composition
Push-homomorphism
    : {f : Fin A  Fin B}
      {g : Fin B  Fin C}
     Push₁ (g  f)  Push₁ g  Push₁ f
Push-homomorphism {f = f} {g} {v} = merge-preimage f v  preimage g  ⁅_⁆

-- Push respects equality
Push-resp-≈
    : {f g : Fin A  Fin B}
     f  g
     Push₁ f  Push₁ g
Push-resp-≈ f≗g {v} = merge-cong₂ v  preimage-cong₁ f≗g  ⁅_⁆

-- the Push functor
Push : Functor Nat (Setoids 0 0)
F₀ Push = Values
F₁ Push = Push₁
identity Push = Push-identity
homomorphism Push = Push-homomorphism
F-resp-≈ Push = Push-resp-≈