1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
{-# OPTIONS --without-K --safe #-}
{-# OPTIONS --hidden-argument-puns #-}
{-# OPTIONS --lossy-unification #-}
module Functor.Instance.Nat.System where
open import Level using (suc; 0ℓ)
import Data.System.Monoidal {suc 0ℓ} as System-⊗
import Categories.Morphism as Morphism
import Functor.Free.Instance.SymmetricMonoidalPreorder.Strong as SymmetricMonoidalPreorder
open import Category.Instance.Setoids.SymmetricMonoidal using (Setoids-×)
open import Categories.Category using (Category)
open import Categories.Category.Instance.Cats using (Cats)
open import Categories.Category.Instance.Monoidals using (StrongMonoidals)
open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
open import Categories.Category.Product using (_⁂_)
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Monoidal using (StrongMonoidalFunctor)
open import Categories.Functor.Monoidal.Properties using (idF-StrongMonoidal; ∘-StrongMonoidal)
open import Categories.Functor.Monoidal.Symmetric using () renaming (module Strong to Strong₃)
open import Categories.Functor.Monoidal.Symmetric.Properties using (idF-StrongSymmetricMonoidal; ∘-StrongSymmetricMonoidal)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper; NaturalIsomorphism)
open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal using () renaming (module Strong to Strong₂)
open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric using () renaming (module Strong to Strong₄)
open import Category.Construction.CMonoids (Setoids-×.symmetric {suc 0ℓ} {suc 0ℓ}) using (CMonoids)
open import Category.Instance.SymMonCat using () renaming (module Strong to Strong₁)
open import Data.Circuit.Value using (Monoid)
open import Data.Fin using (Fin)
open import Data.Nat using (ℕ)
open import Data.Product using (_,_; _×_)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Setoid using (∣_∣)
open import Data.Setoid.Unit using (⊤ₛ)
open import Data.System {suc 0ℓ} using (System; _≤_; Systemₛ; Systems; ≤-refl; ≤-trans; _≈_; discrete)
open import Data.System.Monoidal {suc 0ℓ} using (Systems-MC; Systems-SMC)
open import Data.System.Values Monoid using (module ≋; module Object; Values; ≋-isEquiv)
open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_; id)
open import Function.Construct.Identity using () renaming (function to Id)
open import Function.Construct.Setoid using (_∙_)
open import Functor.Free.Instance.InducedCMonoid using (InducedCMonoid)
open import Functor.Instance.Nat.Pull using (Pull)
open import Functor.Instance.Nat.Push using (Push)
open import Object.Monoid.Commutative (Setoids-×.symmetric {0ℓ} {0ℓ}) using (CommutativeMonoid; CommutativeMonoid⇒)
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality as ≡ using (_≗_)
open CommutativeMonoid⇒ using (arr)
open Func
open Functor
open Object using (Valuesₘ)
open Strong₁ using (SymMonCat)
open Strong₂ using (MonoidalNaturalIsomorphism)
open Strong₃ using (SymmetricMonoidalFunctor)
open Strong₄ using (SymmetricMonoidalNaturalIsomorphism)
open _≤_
private
variable A B C : ℕ
opaque
unfolding Valuesₘ ≋-isEquiv
map : (Fin A → Fin B) → System A → System B
map {A} {B} f X = let open System X in record
{ S = S
; fₛ = fₛ ∙ arr (Pull.₁ f)
; fₒ = arr (Push.₁ f) ∙ fₒ
}
opaque
unfolding map
open System
map-≤ : (f : Fin A → Fin B) {X Y : System A} → X ≤ Y → map f X ≤ map f Y
⇒S (map-≤ f x≤y) = ⇒S x≤y
≗-fₛ (map-≤ f x≤y) = ≗-fₛ x≤y ∘ to (arr (Pull.₁ f))
≗-fₒ (map-≤ f x≤y) = cong (arr (Push.₁ f)) ∘ ≗-fₒ x≤y
opaque
unfolding map-≤
map-≤-refl
: (f : Fin A → Fin B)
→ {X : System A}
→ map-≤ f (≤-refl {A} {X}) ≈ ≤-refl
map-≤-refl f {X} = Setoid.refl (S (map f X))
opaque
unfolding map-≤
map-≤-trans
: (f : Fin A → Fin B)
→ {X Y Z : System A}
→ {h : X ≤ Y}
→ {g : Y ≤ Z}
→ map-≤ f (≤-trans h g) ≈ ≤-trans (map-≤ f h) (map-≤ f g)
map-≤-trans f {Z = Z} = Setoid.refl (S (map f Z))
opaque
unfolding map-≤
map-≈
: (f : Fin A → Fin B)
→ {X Y : System A}
→ {g h : X ≤ Y}
→ h ≈ g
→ map-≤ f h ≈ map-≤ f g
map-≈ f h≈g = h≈g
Sys₁ : (Fin A → Fin B) → Functor (Systems A) (Systems B)
Sys₁ {A} {B} f = record
{ F₀ = map f
; F₁ = λ C≤D → map-≤ f C≤D
; identity = map-≤-refl f
; homomorphism = map-≤-trans f
; F-resp-≈ = map-≈ f
}
opaque
unfolding map
map-id-≤ : (X : System A) → map id X ≤ X
map-id-≤ X .⇒S = Id (S X)
map-id-≤ X .≗-fₛ i s = cong (fₛ X) Pull.identity
map-id-≤ X .≗-fₒ s = Push.identity
opaque
unfolding map
map-id-≥ : (X : System A) → X ≤ map id X
map-id-≥ X .⇒S = Id (S X)
map-id-≥ X .≗-fₛ i s = cong (fₛ X) (≋.sym Pull.identity)
map-id-≥ X .≗-fₒ s = ≋.sym Push.identity
opaque
unfolding map-≤ map-id-≤
map-id-comm
: {X Y : System A}
(f : X ≤ Y)
→ ≤-trans (map-≤ id f) (map-id-≤ Y) ≈ ≤-trans (map-id-≤ X) f
map-id-comm {Y} f = Setoid.refl (S Y)
opaque
unfolding map-id-≤ map-id-≥
map-id-isoˡ
: (X : System A)
→ ≤-trans (map-id-≤ X) (map-id-≥ X) ≈ ≤-refl
map-id-isoˡ X = Setoid.refl (S X)
map-id-isoʳ
: (X : System A)
→ ≤-trans (map-id-≥ X) (map-id-≤ X) ≈ ≤-refl
map-id-isoʳ X = Setoid.refl (S X)
Sys-identity : Sys₁ {A} id ≃ idF
Sys-identity = niHelper record
{ η = map-id-≤
; η⁻¹ = map-id-≥
; commute = map-id-comm
; iso = λ X → record
{ isoˡ = map-id-isoˡ X
; isoʳ = map-id-isoʳ X
}
}
opaque
unfolding map
map-∘-≤
: (f : Fin A → Fin B)
(g : Fin B → Fin C)
(X : System A)
→ map (g ∘ f) X ≤ map g (map f X)
map-∘-≤ f g X .⇒S = Id (S X)
map-∘-≤ f g X .≗-fₛ i s = cong (fₛ X) Pull.homomorphism
map-∘-≤ f g X .≗-fₒ s = Push.homomorphism
opaque
unfolding map
map-∘-≥
: (f : Fin A → Fin B)
(g : Fin B → Fin C)
(X : System A)
→ map g (map f X) ≤ map (g ∘ f) X
map-∘-≥ f g X .⇒S = Id (S X)
map-∘-≥ f g X .≗-fₛ i s = cong (fₛ X) (≋.sym Pull.homomorphism)
map-∘-≥ f g X .≗-fₒ s = ≋.sym Push.homomorphism
Sys-homo
: (f : Fin A → Fin B)
(g : Fin B → Fin C)
→ Sys₁ (g ∘ f) ≃ Sys₁ g ∘F Sys₁ f
Sys-homo {A} f g = niHelper record
{ η = map-∘-≤ f g
; η⁻¹ = map-∘-≥ f g
; commute = map-∘-comm f g
; iso = λ X → record
{ isoˡ = isoˡ X
; isoʳ = isoʳ X
}
}
where
opaque
unfolding map-∘-≤ map-≤
map-∘-comm
: (f : Fin A → Fin B)
(g : Fin B → Fin C)
→ {X Y : System A}
(X≤Y : X ≤ Y)
→ ≤-trans (map-≤ (g ∘ f) X≤Y) (map-∘-≤ f g Y)
≈ ≤-trans (map-∘-≤ f g X) (map-≤ g (map-≤ f X≤Y))
map-∘-comm f g {Y} X≤Y = Setoid.refl (S Y)
module _ (X : System A) where
opaque
unfolding map-∘-≤ map-∘-≥
isoˡ : ≤-trans (map-∘-≤ f g X) (map-∘-≥ f g X) ≈ ≤-refl
isoˡ = Setoid.refl (S X)
isoʳ : ≤-trans (map-∘-≥ f g X) (map-∘-≤ f g X) ≈ ≤-refl
isoʳ = Setoid.refl (S X)
module _ {f g : Fin A → Fin B} (f≗g : f ≗ g) (X : System A) where
opaque
unfolding map
map-cong-≤ : map f X ≤ map g X
map-cong-≤ .⇒S = Id (S X)
map-cong-≤ .≗-fₛ i s = cong (fₛ X) (Pull.F-resp-≈ f≗g)
map-cong-≤ .≗-fₒ s = Push.F-resp-≈ f≗g
map-cong-≥ : map g X ≤ map f X
map-cong-≥ .⇒S = Id (S X)
map-cong-≥ .≗-fₛ i s = cong (fₛ X) (Pull.F-resp-≈ (≡.sym ∘ f≗g))
map-cong-≥ .≗-fₒ s = Push.F-resp-≈ (≡.sym ∘ f≗g)
opaque
unfolding map-≤ map-cong-≤
map-cong-comm
: {f g : Fin A → Fin B}
(f≗g : f ≗ g)
{X Y : System A}
(h : X ≤ Y)
→ ≤-trans (map-≤ f h) (map-cong-≤ f≗g Y)
≈ ≤-trans (map-cong-≤ f≗g X) (map-≤ g h)
map-cong-comm f≗g {Y} h = Setoid.refl (S Y)
opaque
unfolding map-cong-≤
map-cong-isoˡ
: {f g : Fin A → Fin B}
(f≗g : f ≗ g)
(X : System A)
→ ≤-trans (map-cong-≤ f≗g X) (map-cong-≥ f≗g X) ≈ ≤-refl
map-cong-isoˡ f≗g X = Setoid.refl (S X)
map-cong-isoʳ
: {f g : Fin A → Fin B}
(f≗g : f ≗ g)
(X : System A)
→ ≤-trans (map-cong-≥ f≗g X) (map-cong-≤ f≗g X) ≈ ≤-refl
map-cong-isoʳ f≗g X = Setoid.refl (S X)
Sys-resp-≈ : {f g : Fin A → Fin B} → f ≗ g → Sys₁ f ≃ Sys₁ g
Sys-resp-≈ f≗g = niHelper record
{ η = map-cong-≤ f≗g
; η⁻¹ = map-cong-≥ f≗g
; commute = map-cong-comm f≗g
; iso = λ X → record
{ isoˡ = map-cong-isoˡ f≗g X
; isoʳ = map-cong-isoʳ f≗g X
}
}
module NatCat where
Sys : Functor Nat (Cats (suc 0ℓ) (suc 0ℓ) 0ℓ)
Sys .F₀ = Systems
Sys .F₁ = Sys₁
Sys .identity = Sys-identity
Sys .homomorphism = Sys-homo _ _
Sys .F-resp-≈ = Sys-resp-≈
module Sys = Functor Sys
module NatMC where
module _ (f : Fin A → Fin B) where
module A = System-⊗ A
module B = System-⊗ B
open CommutativeMonoid⇒ (Push.₁ f)
open Morphism (Systems B) using (_≅_)
opaque
unfolding map
ε-≅ : discrete B ≅ map f (discrete A)
ε-≅ = record
-- other fields can be inferred
{ from = record
{ ⇒S = Id ⊤ₛ
; ≗-fₒ = λ s → ≋.sym preserves-η
}
; to = record
{ ⇒S = Id ⊤ₛ
; ≗-fₒ = λ s → preserves-η
}
}
opaque
unfolding map-≤
⊗-homo-≃ : B.⊗ ∘F (Sys₁ f ⁂ Sys₁ f) ≃ Sys₁ f ∘F A.⊗
⊗-homo-≃ = niHelper record
{ η = λ (X , Y) → record
{ ⇒S = Id (S X ×ₛ S Y)
; ≗-fₛ = λ i s → Setoid.refl (S X ×ₛ S Y)
; ≗-fₒ = λ (s₁ , s₂) → ≋.sym preserves-μ
}
; η⁻¹ = λ (X , Y) → record
{ ⇒S = Id (S X ×ₛ S Y)
; ≗-fₛ = λ i s → Setoid.refl (S X ×ₛ S Y)
; ≗-fₒ = λ s → preserves-μ
}
; commute = λ { {_} {Z′ , Y′} _ → Setoid.refl (S Z′ ×ₛ S Y′) }
; iso = λ (X , Y) → record
{ isoˡ = Setoid.refl (S X ×ₛ S Y)
; isoʳ = Setoid.refl (S X ×ₛ S Y)
}
}
private
module ε-≅ = _≅_ ε-≅
module ⊗-homo-≃ = NaturalIsomorphism ⊗-homo-≃
module A-MC = MonoidalCategory A.Systems-MC
module B-MC = MonoidalCategory B.Systems-MC
F : Functor (Systems A) (Systems B)
F = Sys₁ f
module F = Functor F
open B-MC using () renaming (_∘_ to _∘′_)
opaque
unfolding ⊗-homo-≃
associativity
: {X Y Z : System A}
→ F.₁ A.Associator.assoc-≤
∘′ ⊗-homo-≃.⇒.η (X A.⊗₀ Y , Z)
∘′ ⊗-homo-≃.⇒.η (X , Y) B.⊗₁ B-MC.id
B-MC.≈ ⊗-homo-≃.⇒.η (X , Y A.⊗₀ Z)
∘′ B-MC.id B.⊗₁ ⊗-homo-≃.⇒.η (Y , Z)
∘′ B.Associator.assoc-≤
associativity {X} {Y} {Z} = Setoid.refl (S X ×ₛ (S Y ×ₛ S Z))
unitaryˡ
: {X : System A}
→ F.₁ A.Unitors.⊗-discreteˡ-≤
∘′ ⊗-homo-≃.⇒.η (A-MC.unit , X)
∘′ ε-≅.from B.⊗₁ B-MC.id
B-MC.≈ B-MC.unitorˡ.from
unitaryˡ {X} = Setoid.refl (S X)
unitaryʳ
: {X : System A}
→ F.₁ A.Unitors.⊗-discreteʳ-≤
∘′ ⊗-homo-≃.⇒.η (X , discrete A)
∘′ B-MC.id B.⊗₁ ε-≅.from
B-MC.≈ B-MC.unitorʳ.from
unitaryʳ {X} = Setoid.refl (S X)
Sys-MC₁ : StrongMonoidalFunctor (Systems-MC A) (Systems-MC B)
Sys-MC₁ = record
{ F = Sys₁ f
; isStrongMonoidal = record
{ ε = ε-≅
; ⊗-homo = ⊗-homo-≃
; associativity = associativity
; unitaryˡ = unitaryˡ
; unitaryʳ = unitaryʳ
}
}
opaque
unfolding map-id-≤ ⊗-homo-≃
Sys-MC-identity : MonoidalNaturalIsomorphism (Sys-MC₁ id) (idF-StrongMonoidal (Systems-MC A))
Sys-MC-identity = record
{ U = NatCat.Sys.identity
; F⇒G-isMonoidal = record
{ ε-compat = _
; ⊗-homo-compat = λ {X Y} → Setoid.refl (S X ×ₛ S Y)
}
}
opaque
unfolding map-∘-≤ ⊗-homo-≃
Sys-MC-homomorphism
: {g : Fin B → Fin C}
{f : Fin A → Fin B}
→ MonoidalNaturalIsomorphism (Sys-MC₁ (g ∘ f)) (∘-StrongMonoidal (Sys-MC₁ g) (Sys-MC₁ f))
Sys-MC-homomorphism = record
{ U = NatCat.Sys.homomorphism
; F⇒G-isMonoidal = record
{ ε-compat = _
; ⊗-homo-compat = λ {X Y} → Setoid.refl (S X ×ₛ S Y)
}
}
opaque
unfolding map-cong-≤ ⊗-homo-≃
Sys-MC-resp-≈
: {f g : Fin A → Fin B}
→ f ≗ g
→ MonoidalNaturalIsomorphism (Sys-MC₁ f) (Sys-MC₁ g)
Sys-MC-resp-≈ f≗g = record
{ U = NatCat.Sys.F-resp-≈ f≗g
; F⇒G-isMonoidal = record
{ ε-compat = _
; ⊗-homo-compat = λ {X Y} → Setoid.refl (S X ×ₛ S Y)
}
}
Sys : Functor Nat (StrongMonoidals (suc 0ℓ) (suc 0ℓ) 0ℓ)
Sys .F₀ = Systems-MC
Sys .F₁ = Sys-MC₁
Sys .identity = Sys-MC-identity
Sys .homomorphism = Sys-MC-homomorphism
Sys .F-resp-≈ = Sys-MC-resp-≈
module Sys = Functor Sys
module NatSMC where
module _ (f : Fin A → Fin B) where
private
module A = System-⊗ A
module B = System-⊗ B
module A-SMC = SymmetricMonoidalCategory A.Systems-SMC
module B-SMC = SymmetricMonoidalCategory B.Systems-SMC
F : Functor (Systems A) (Systems B)
F = Sys₁ f
module F = Functor F
F-MF : StrongMonoidalFunctor (Systems-MC A) (Systems-MC B)
F-MF = NatMC.Sys.₁ f
module F-MF = StrongMonoidalFunctor F-MF
opaque
unfolding NatMC.⊗-homo-≃
σ-compat
: {X Y : System A}
→ F.₁ (A-SMC.braiding.⇒.η (X , Y)) B-SMC.∘ F-MF.⊗-homo.⇒.η (X , Y)
B-SMC.≈ F-MF.⊗-homo.⇒.η (Y , X) B-SMC.∘ B-SMC.braiding.⇒.η (F.₀ X , F.₀ Y)
σ-compat {X} {Y} = Setoid.refl (S Y ×ₛ S X)
Sys-SMC₁ : SymmetricMonoidalFunctor (Systems-SMC A) (Systems-SMC B)
Sys-SMC₁ = record
{ F-MF
; isBraidedMonoidal = record
{ F-MF
; braiding-compat = σ-compat
}
}
Sys-SMC-identity : SymmetricMonoidalNaturalIsomorphism (Sys-SMC₁ id) (idF-StrongSymmetricMonoidal (Systems-SMC A))
Sys-SMC-identity = record { MonoidalNaturalIsomorphism NatMC.Sys.identity }
Sys-SMC-homomorphism
: {g : Fin B → Fin C}
{f : Fin A → Fin B}
→ SymmetricMonoidalNaturalIsomorphism (Sys-SMC₁ (g ∘ f)) (∘-StrongSymmetricMonoidal (Sys-SMC₁ g) (Sys-SMC₁ f))
Sys-SMC-homomorphism = record { MonoidalNaturalIsomorphism NatMC.Sys.homomorphism }
Sys-SMC-resp-≈
: {f g : Fin A → Fin B}
→ f ≗ g
→ SymmetricMonoidalNaturalIsomorphism (Sys-SMC₁ f) (Sys-SMC₁ g)
Sys-SMC-resp-≈ f≗g = record { MonoidalNaturalIsomorphism (NatMC.Sys.F-resp-≈ f≗g) }
Sys : Functor Nat (SymMonCat {suc 0ℓ} {suc 0ℓ} {0ℓ})
Sys .F₀ = Systems-SMC
Sys .F₁ = Sys-SMC₁
Sys .identity = Sys-SMC-identity
Sys .homomorphism = Sys-SMC-homomorphism
Sys .F-resp-≈ = Sys-SMC-resp-≈
module Sys = Functor Sys
module NatCMon where
Sys : Functor Nat CMonoids
Sys = InducedCMonoid ∘F SymmetricMonoidalPreorder.Free ∘F NatSMC.Sys
module Sys = Functor Sys
|