blob: 05e1e7b68d21847aab9e795f68042b0a8394fd0a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
{-# OPTIONS --without-K --safe #-}
module Functor.Instance.Nat.System where
open import Level using (suc; 0ℓ)
open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor.Core using (Functor)
open import Data.Circuit.Value using (Monoid)
open import Data.Fin.Base using (Fin)
open import Data.Nat.Base using (ℕ)
open import Data.Product.Base using (_,_; _×_)
open import Data.System {suc 0ℓ} using (System; _≤_; Systemₛ)
open import Data.System.Values Monoid using (module ≋)
open import Data.Unit using (⊤; tt)
open import Function.Base using (id; _∘_)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Function.Construct.Identity using () renaming (function to Id)
open import Function.Construct.Setoid using (_∙_)
open import Functor.Instance.Nat.Pull using (Pull)
open import Functor.Instance.Nat.Push using (Push)
open import Relation.Binary.PropositionalEquality as ≡ using (_≗_)
open Func
open Functor
open _≤_
private
variable A B C : ℕ
opaque
map : (Fin A → Fin B) → System A → System B
map f X = let open System X in record
{ S = S
; fₛ = fₛ ∙ Pull.₁ f
; fₒ = Push.₁ f ∙ fₒ
}
≤-cong : (f : Fin A → Fin B) {X Y : System A} → Y ≤ X → map f Y ≤ map f X
⇒S (≤-cong f x≤y) = ⇒S x≤y
≗-fₛ (≤-cong f x≤y) = ≗-fₛ x≤y ∘ to (Pull.₁ f)
≗-fₒ (≤-cong f x≤y) = cong (Push.₁ f) ∘ ≗-fₒ x≤y
System₁ : (Fin A → Fin B) → Systemₛ A ⟶ₛ Systemₛ B
to (System₁ f) = map f
cong (System₁ f) (x≤y , y≤x) = ≤-cong f x≤y , ≤-cong f y≤x
opaque
unfolding System₁
id-x≤x : {X : System A} → System₁ id ⟨$⟩ X ≤ X
⇒S (id-x≤x) = Id _
≗-fₛ (id-x≤x {_} {x}) i s = cong (System.fₛ x) Pull.identity
≗-fₒ (id-x≤x {A} {x}) s = Push.identity
x≤id-x : {x : System A} → x ≤ System₁ id ⟨$⟩ x
⇒S x≤id-x = Id _
≗-fₛ (x≤id-x {A} {x}) i s = cong (System.fₛ x) (≋.sym Pull.identity)
≗-fₒ (x≤id-x {A} {x}) s = ≋.sym Push.identity
System-homomorphism
: {f : Fin A → Fin B}
{g : Fin B → Fin C}
{X : System A}
→ System₁ (g ∘ f) ⟨$⟩ X ≤ System₁ g ⟨$⟩ (System₁ f ⟨$⟩ X)
× System₁ g ⟨$⟩ (System₁ f ⟨$⟩ X) ≤ System₁ (g ∘ f) ⟨$⟩ X
System-homomorphism {f = f} {g} {X} = left , right
where
open System X
left : map (g ∘ f) X ≤ map g (map f X)
left .⇒S = Id S
left .≗-fₛ i s = cong fₛ Pull.homomorphism
left .≗-fₒ s = Push.homomorphism
right : map g (map f X) ≤ map (g ∘ f) X
right .⇒S = Id S
right .≗-fₛ i s = cong fₛ (≋.sym Pull.homomorphism)
right .≗-fₒ s = ≋.sym Push.homomorphism
System-resp-≈
: {f g : Fin A → Fin B}
→ f ≗ g
→ {X : System A}
→ System₁ f ⟨$⟩ X ≤ System₁ g ⟨$⟩ X
× System₁ g ⟨$⟩ X ≤ System₁ f ⟨$⟩ X
System-resp-≈ {A} {B} {f = f} {g} f≗g {X} = both f≗g , both (≡.sym ∘ f≗g)
where
open System X
both : {f g : Fin A → Fin B} → f ≗ g → map f X ≤ map g X
both f≗g .⇒S = Id S
both f≗g .≗-fₛ i s = cong fₛ (Pull.F-resp-≈ f≗g {i})
both {f} {g} f≗g .≗-fₒ s = Push.F-resp-≈ f≗g
opaque
unfolding System₁
Sys-defs : ⊤
Sys-defs = tt
Sys : Functor Nat (Setoids (suc 0ℓ) (suc 0ℓ))
Sys .F₀ = Systemₛ
Sys .F₁ = System₁
Sys .identity = id-x≤x , x≤id-x
Sys .homomorphism {x = X} = System-homomorphism {X = X}
Sys .F-resp-≈ = System-resp-≈
module Sys = Functor Sys
|