aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/Nat/System.agda
blob: 4a651f2ac009fdf28b32ff4ea72dabd330e7af95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
{-# OPTIONS --without-K --safe #-}
{-# OPTIONS --hidden-argument-puns #-}

module Functor.Instance.Nat.System where

open import Level using (suc; 0)

open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category using (Category)
open import Categories.Category.Instance.Cats using (Cats)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper)
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Data.Circuit.Value using (Monoid)
open import Data.Fin using (Fin)
open import Data.Nat using ()
open import Data.Product.Base using (_,_; _×_)
open import Data.Setoid using (∣_∣)
open import Data.System {suc 0} using (System; _≤_; Systemₛ; Systems; ≤-refl; ≤-trans; _≈_)
open import Data.System.Values Monoid using (module ≋; module Object; Values; ≋-isEquiv)
open import Relation.Binary using (Setoid)
open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_; id)
open import Function.Construct.Identity using () renaming (function to Id)
open import Function.Construct.Setoid using (_∙_)
open import Functor.Instance.Nat.Pull using (Pull)
open import Functor.Instance.Nat.Push using (Push)
open import Relation.Binary.PropositionalEquality as  using (_≗_)

open import Category.Instance.Setoids.SymmetricMonoidal {0} {0} using (Setoids-×)
open import Category.Construction.CMonoids Setoids-×.symmetric using (CMonoids)
open import Object.Monoid.Commutative Setoids-×.symmetric using (CommutativeMonoid; CommutativeMonoid⇒)

open CommutativeMonoid⇒ using (arr)
open Object using (Valuesₘ)
open Func
open Functor
open _≤_

private
  variable A B C : ℕ

opaque
  unfolding Valuesₘ ≋-isEquiv
  map : (Fin A  Fin B)  System A  System B
  map {A} {B} f X = let open System X in record
      { S = S
      ; fₛ = fₛ  arr (Pull.₁ f)
      ; fₒ = arr (Push.₁ f)  fₒ
      }

opaque
  unfolding map
  open System
  map-≤ : (f : Fin A  Fin B) {X Y : System A}  X  Y  map f X  map f Y
  ⇒S (map-≤ f x≤y) = ⇒S x≤y
  ≗-fₛ (map-≤ f x≤y) = ≗-fₛ x≤y  to (arr (Pull.₁ f))
  ≗-fₒ (map-≤ f x≤y) = cong (arr (Push.₁ f))  ≗-fₒ x≤y

opaque
  unfolding map-≤
  map-≤-refl
      : (f : Fin A  Fin B)
       {X : System A}
       map-≤ f (≤-refl {A} {X})  ≤-refl
  map-≤-refl f {X} = Setoid.refl (S (map f X))

opaque
  unfolding map-≤
  map-≤-trans
      : (f : Fin A  Fin B)
       {X Y Z : System A}
       {h : X  Y}
       {g : Y  Z}
       map-≤ f (≤-trans h g)  ≤-trans (map-≤ f h) (map-≤ f g)
  map-≤-trans f {Z = Z} = Setoid.refl (S (map f Z))

opaque
  unfolding map-≤
  map-≈
      : (f : Fin A  Fin B)
       {X Y : System A}
       {g h : X  Y}
       h  g
       map-≤ f h  map-≤ f g
  map-≈ f h≈g = h≈g

Sys₁ : (Fin A  Fin B)  Functor (Systems A) (Systems B)
Sys₁ {A} {B} f = record
    { F₀ = map f
    ; F₁ = λ C≤D  map-≤ f C≤D
    ; identity = map-≤-refl f
    ; homomorphism = map-≤-trans f
    ; F-resp-≈ = map-≈ f
    }

opaque
  unfolding map
  map-id-≤ : (X : System A)  map id X  X
  map-id-≤ X .⇒S = Id (S X)
  map-id-≤ X .≗-fₛ i s = cong (fₛ X) Pull.identity
  map-id-≤ X .≗-fₒ s = Push.identity

opaque
  unfolding map
  map-id-≥ : (X : System A)  X  map id X
  map-id-≥ X .⇒S = Id (S X)
  map-id-≥ X .≗-fₛ i s = cong (fₛ X) (≋.sym Pull.identity)
  map-id-≥ X .≗-fₒ s = ≋.sym Push.identity

opaque
  unfolding map-≤ map-id-≤
  map-id-comm
      : {X Y : System A}
        (f : X  Y)
       ≤-trans (map-≤ id f) (map-id-≤ Y)  ≤-trans (map-id-≤ X) f
  map-id-comm {Y} f = Setoid.refl (S Y)

opaque

  unfolding map-id-≤ map-id-≥

  map-id-isoˡ
      : (X : System A)
       ≤-trans (map-id-≤ X) (map-id-≥ X)  ≤-refl
  map-id-isoˡ X = Setoid.refl (S X)

  map-id-isoʳ
      : (X : System A)
       ≤-trans (map-id-≥ X) (map-id-≤ X)  ≤-refl
  map-id-isoʳ X = Setoid.refl (S X)

Sys-identity : Sys₁ {A} id  idF
Sys-identity = niHelper record
    { η = map-id-≤
    ; η⁻¹ = map-id-≥
    ; commute = map-id-comm
    ; iso = λ X  record
        { isoˡ = map-id-isoˡ X
        ; isoʳ = map-id-isoʳ X
        }
    }

opaque
  unfolding map
  map-∘-≤
      : (f : Fin A  Fin B)
        (g : Fin B  Fin C)
        (X : System A)
       map (g  f) X  map g (map f X)
  map-∘-≤ f g X .⇒S = Id (S X)
  map-∘-≤ f g X .≗-fₛ i s = cong (fₛ X) Pull.homomorphism
  map-∘-≤ f g X .≗-fₒ s = Push.homomorphism

opaque
  unfolding map
  map-∘-≥
      : (f : Fin A  Fin B)
        (g : Fin B  Fin C)
        (X : System A)
       map g (map f X)  map (g  f) X
  map-∘-≥ f g X .⇒S = Id (S X)
  map-∘-≥ f g X .≗-fₛ i s = cong (fₛ X) (≋.sym Pull.homomorphism)
  map-∘-≥ f g X .≗-fₒ s = ≋.sym Push.homomorphism

Sys-homo
    : (f : Fin A  Fin B)
      (g : Fin B  Fin C)
     Sys₁ (g  f)  Sys₁ g ∘F Sys₁ f
Sys-homo {A} f g = niHelper record
    { η = map-∘-≤ f g
    ; η⁻¹ = map-∘-≥ f g
    ; commute = map-∘-comm f g
    ; iso = λ X  record
        { isoˡ = isoˡ X
        ; isoʳ = isoʳ X
        }
    }
  where
    opaque
      unfolding map-∘-≤ map-≤
      map-∘-comm
          : (f : Fin A  Fin B)
            (g : Fin B  Fin C)
           {X Y : System A}
            (X≤Y : X  Y)
           ≤-trans (map-≤ (g  f) X≤Y) (map-∘-≤ f g Y)
           ≤-trans (map-∘-≤ f g X) (map-≤ g (map-≤ f X≤Y))
      map-∘-comm f g {Y} X≤Y = Setoid.refl (S Y)
    module _ (X : System A) where
      opaque
        unfolding map-∘-≤ map-∘-≥
        isoˡ : ≤-trans (map-∘-≤ f g X) (map-∘-≥ f g X)  ≤-refl
        isoˡ = Setoid.refl (S X)
        isoʳ : ≤-trans (map-∘-≥ f g X) (map-∘-≤ f g X)  ≤-refl
        isoʳ = Setoid.refl (S X)


module _ {f g : Fin A  Fin B} (f≗g : f  g) (X : System A) where

  opaque

    unfolding map

    map-cong-≤ : map f X  map g X
    map-cong-≤ .⇒S = Id (S X)
    map-cong-≤ .≗-fₛ i s = cong (fₛ X) (Pull.F-resp-≈ f≗g)
    map-cong-≤ .≗-fₒ s = Push.F-resp-≈ f≗g

    map-cong-≥ : map g X  map f X
    map-cong-≥ .⇒S = Id (S X)
    map-cong-≥ .≗-fₛ i s = cong (fₛ X) (Pull.F-resp-≈ (≡.sym  f≗g))
    map-cong-≥ .≗-fₒ s = Push.F-resp-≈ (≡.sym  f≗g)

opaque
  unfolding map-≤ map-cong-≤
  map-cong-comm
      : {f g : Fin A  Fin B}
        (f≗g : f  g)
        {X Y : System A}
        (h : X  Y)
       ≤-trans (map-≤ f h) (map-cong-≤ f≗g Y)
       ≤-trans (map-cong-≤ f≗g X) (map-≤ g h)
  map-cong-comm f≗g {Y} h = Setoid.refl (S Y)

opaque

  unfolding map-cong-≤

  map-cong-isoˡ
      : {f g : Fin A  Fin B}
        (f≗g : f  g)
        (X : System A)
       ≤-trans (map-cong-≤ f≗g X) (map-cong-≥ f≗g X)  ≤-refl
  map-cong-isoˡ f≗g X = Setoid.refl (S X)

  map-cong-isoʳ
      : {f g : Fin A  Fin B}
        (f≗g : f  g)
        (X : System A)
       ≤-trans (map-cong-≥ f≗g X) (map-cong-≤ f≗g X)  ≤-refl
  map-cong-isoʳ f≗g X = Setoid.refl (S X)

Sys-resp-≈ : {f g : Fin A  Fin B}  f  g  Sys₁ f  Sys₁ g
Sys-resp-≈ f≗g = niHelper record
    { η = map-cong-≤ f≗g
    ; η⁻¹ = map-cong-≥ f≗g
    ; commute = map-cong-comm f≗g
    ; iso = λ X  record
        { isoˡ = map-cong-isoˡ f≗g X
        ; isoʳ = map-cong-isoʳ f≗g X
        }
    }

Sys : Functor Nat (Cats (suc 0) (suc 0) 0)
Sys .F₀ = Systems
Sys .F₁ = Sys₁
Sys .identity = Sys-identity
Sys .homomorphism = Sys-homo _ _
Sys .F-resp-≈ = Sys-resp-≈

module Sys = Functor Sys