1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
{-# OPTIONS --without-K --safe #-}
{-# OPTIONS --no-require-unique-meta-solutions #-}
open import Level using (Level)
module Functor.Instance.Underlying.SymmetricMonoidal.FinitelyCocomplete {o ℓ e : Level} where
import Categories.Morphism.Reasoning as ⇒-Reasoning
import Categories.Object.Coproduct as Coproduct
import Categories.Object.Initial as Initial
open import Categories.Functor using (Functor; _∘F_)
open import Categories.Functor.Properties using ([_]-resp-square; [_]-resp-∘)
open import Categories.Functor.Monoidal using (IsMonoidalFunctor)
open import Categories.Functor.Monoidal.Braided using (module Lax)
open import Categories.Functor.Monoidal.Properties using (idF-SymmetricMonoidal; ∘-SymmetricMonoidal)
open import Categories.Functor.Monoidal.Symmetric using (module Lax)
open import Categories.Category using (Category; _[_,_]; _[_≈_]; _[_∘_])
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory; BraidedMonoidalCategory; MonoidalCategory)
open import Categories.Category.Product using (_⁂_)
open import Categories.Morphism using (_≅_)
open import Categories.Morphism.Notation using (_[_≅_])
open import Categories.NaturalTransformation.Core using (NaturalTransformation; ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper) renaming (refl to ≃-refl)
open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric using (module Lax)
open import Data.Product.Base using (_,_)
open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
open import Category.Instance.SymMonCat {o} {ℓ} {e} using (SymMonCat)
open import Functor.Exact using (RightExactFunctor; idREF; ∘-RightExactFunctor)
open FinitelyCocompleteCategory using () renaming (symmetricMonoidalCategory to smc)
open SymmetricMonoidalCategory using (unit) renaming (braidedMonoidalCategory to bmc)
open BraidedMonoidalCategory using () renaming (monoidalCategory to mc)
private
variable
A B C : FinitelyCocompleteCategory o ℓ e
F₀ : FinitelyCocompleteCategory o ℓ e → SymmetricMonoidalCategory o ℓ e
F₀ C = smc C
{-# INJECTIVE_FOR_INFERENCE F₀ #-}
F₁ : RightExactFunctor A B → Lax.SymmetricMonoidalFunctor (F₀ A) (F₀ B)
F₁ {A} {B} F = record
{ F = F.F
; isBraidedMonoidal = record
{ isMonoidal = record
{ ε = ε-iso.from
; ⊗-homo = ⊗-homo
; associativity = assoc
; unitaryˡ = unitaryˡ
; unitaryʳ = unitaryʳ
}
; braiding-compat = braiding-compat
}
}
where
module F = RightExactFunctor F
module A = SymmetricMonoidalCategory (F₀ A)
module B = SymmetricMonoidalCategory (F₀ B)
module A′ = FinitelyCocompleteCategory A
module B′ = FinitelyCocompleteCategory B
ε-iso : B.U [ B.unit ≅ F.₀ A.unit ]
ε-iso = Initial.up-to-iso B.U B′.initial (record { ⊥ = F.₀ A′.⊥ ; ⊥-is-initial = F.F-resp-⊥ A′.⊥-is-initial })
module ε-iso = _≅_ ε-iso
+-iso : ∀ {X Y} → B.U [ F.₀ X B′.+ F.₀ Y ≅ F.₀ (X A′.+ Y) ]
+-iso = Coproduct.up-to-iso B.U B′.coproduct (Coproduct.IsCoproduct⇒Coproduct B.U (F.F-resp-+ (Coproduct.Coproduct⇒IsCoproduct A.U A′.coproduct)))
module +-iso {X Y} = _≅_ (+-iso {X} {Y})
module B-proofs where
open ⇒-Reasoning B.U
open B.HomReasoning
open B.Equiv
open B using (_∘_; _≈_)
open B′ using (_+₁_; []-congˡ; []-congʳ; []-cong₂)
open A′ using (_+_; i₁; i₂)
⊗-homo : NaturalTransformation (B.⊗ ∘F (F.F ⁂ F.F)) (F.F ∘F A.⊗)
⊗-homo = ntHelper record
{ η = λ { (X , Y) → +-iso.from {X} {Y} }
; commute = λ { {X , Y} {X′ , Y′} (f , g) →
B′.coproduct.∘-distribˡ-[]
○ B′.coproduct.[]-cong₂
(pullˡ B′.coproduct.inject₁ ○ [ F.F ]-resp-square (A.Equiv.sym A′.coproduct.inject₁))
(pullˡ B′.coproduct.inject₂ ○ [ F.F ]-resp-square (A.Equiv.sym A′.coproduct.inject₂))
○ sym B′.coproduct.∘-distribˡ-[] }
}
assoc
: {X Y Z : A.Obj}
→ F.₁ A′.+-assocˡ
∘ +-iso.from {X + Y} {Z}
∘ (+-iso.from {X} {Y} +₁ B.id {F.₀ Z})
≈ +-iso.from {X} {Y + Z}
∘ (B.id {F.₀ X} +₁ +-iso.from {Y} {Z})
∘ B′.+-assocˡ
assoc {X} {Y} {Z} = begin
F.₁ A′.+-assocˡ ∘ +-iso.from ∘ (+-iso.from +₁ B.id) ≈⟨ refl⟩∘⟨ B′.[]∘+₁ ⟩
F.₁ A′.+-assocˡ ∘ B′.[ F.₁ i₁ ∘ +-iso.from , F.₁ i₂ ∘ B.id ] ≈⟨ refl⟩∘⟨ []-congʳ B′.coproduct.∘-distribˡ-[] ⟩
F.₁ A′.+-assocˡ ∘ B′.[ B′.[ F.₁ i₁ ∘ F.₁ i₁ , F.₁ i₁ ∘ F.₁ i₂ ] , F.₁ i₂ ∘ B.id ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟩
B′.[ F.₁ A′.+-assocˡ ∘ B′.[ F.₁ i₁ ∘ F.₁ i₁ , F.₁ i₁ ∘ F.₁ i₂ ] , _ ] ≈⟨ []-congʳ B′.coproduct.∘-distribˡ-[] ⟩
B′.[ B′.[ F.₁ A′.+-assocˡ ∘ F.₁ i₁ ∘ F.₁ i₁ , F.₁ A′.+-assocˡ ∘ _ ] , _ ] ≈⟨ []-congʳ ([]-congʳ (pullˡ ([ F.F ]-resp-∘ A′.coproduct.inject₁))) ⟩
B′.[ B′.[ F.₁ A′.[ i₁ , i₂ A′.∘ i₁ ] ∘ F.₁ i₁ , F.₁ A′.+-assocˡ ∘ _ ] , _ ] ≈⟨ []-congʳ ([]-congʳ ([ F.F ]-resp-∘ A′.coproduct.inject₁)) ⟩
B′.[ B′.[ F.₁ i₁ , F.₁ A′.+-assocˡ ∘ F.₁ i₁ ∘ F.₁ i₂ ] , _ ] ≈⟨ []-congʳ ([]-congˡ (pullˡ ([ F.F ]-resp-∘ A′.coproduct.inject₁))) ⟩
B′.[ B′.[ F.₁ i₁ , F.₁ A′.[ i₁ , i₂ A′.∘ i₁ ] ∘ F.₁ i₂ ] , _ ] ≈⟨ []-congʳ ([]-congˡ ([ F.F ]-resp-∘ A′.coproduct.inject₂)) ⟩
B′.[ B′.[ F.₁ i₁ , F.₁ (i₂ A′.∘ i₁) ] , F.₁ A′.+-assocˡ ∘ F.₁ i₂ ∘ B.id ] ≈⟨ []-congˡ (pullˡ ([ F.F ]-resp-∘ A′.coproduct.inject₂)) ⟩
B′.[ B′.[ F.₁ i₁ , F.₁ (i₂ A′.∘ i₁) ] , F.₁ (i₂ A′.∘ i₂) ∘ B.id ] ≈⟨ []-cong₂ ([]-congˡ F.homomorphism) (B.identityʳ ○ F.homomorphism) ⟩
B′.[ B′.[ F.₁ i₁ , F.₁ i₂ B′.∘ F.₁ i₁ ] , F.₁ i₂ ∘ F.₁ i₂ ] ≈⟨ []-congʳ ([]-congˡ B′.coproduct.inject₁) ⟨
B′.[ B′.[ F.₁ i₁ , B′.[ F.₁ i₂ B′.∘ F.₁ i₁ , _ ] ∘ B′.i₁ ] , _ ] ≈⟨ []-congʳ ([]-cong₂ (sym B′.coproduct.inject₁) (pushˡ (sym B′.coproduct.inject₂))) ⟩
B′.[ B′.[ B′.[ F.₁ i₁ , _ ] ∘ B′.i₁ , B′.[ F.₁ i₁ , _ ] ∘ B′.i₂ ∘ B′.i₁ ] , _ ] ≈⟨ []-congʳ B′.coproduct.∘-distribˡ-[] ⟨
B′.[ B′.[ F.₁ i₁ , _ ] ∘ B′.[ B′.i₁ , B′.i₂ ∘ B′.i₁ ] , F.₁ i₂ ∘ F.₁ i₂ ] ≈⟨ []-congˡ B′.coproduct.inject₂ ⟨
B′.[ B′.[ F.₁ i₁ , _ ] ∘ B′.[ _ , _ ] , B′.[ _ , F.₁ i₂ ∘ F.₁ i₂ ] ∘ B′.i₂ ] ≈⟨ []-congˡ (pushˡ (sym B′.coproduct.inject₂)) ⟩
B′.[ B′.[ F.₁ i₁ , _ ] ∘ B′.[ _ , _ ] , B′.[ F.₁ i₁ , _ ] ∘ B′.i₂ ∘ B′.i₂ ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟨
B′.[ F.₁ i₁ , B′.[ F.₁ i₂ ∘ F.₁ i₁ , F.₁ i₂ ∘ F.₁ i₂ ] ] ∘ B′.+-assocˡ ≈⟨ []-cong₂ B.identityʳ (B′.coproduct.∘-distribˡ-[]) ⟩∘⟨refl ⟨
B′.[ F.₁ i₁ B′.∘ B′.id , F.₁ i₂ ∘ B′.[ F.₁ i₁ , F.₁ i₂ ] ] ∘ B′.+-assocˡ ≈⟨ pushˡ (sym B′.[]∘+₁) ⟩
+-iso.from ∘ (B.id +₁ +-iso.from) ∘ B′.+-assocˡ ∎
unitaryˡ
: {X : A.Obj}
→ F.₁ A′.[ A′.initial.! , A.id {X} ]
∘ B′.[ F.₁ i₁ , F.₁ i₂ ]
∘ B′.[ B′.i₁ ∘ B′.initial.! , B′.i₂ ∘ B.id ]
≈ B′.[ B′.initial.! , B.id ]
unitaryˡ {X} = begin
F.₁ A′.[ A′.initial.! , A.id ] ∘ B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.[ _ , B′.i₂ ∘ B.id ] ≈⟨ refl⟩∘⟨ B′.coproduct.∘-distribˡ-[] ⟩
_ ∘ B′.[ _ ∘ B′.i₁ ∘ B′.initial.! , B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.i₂ ∘ B.id ] ≈⟨ refl⟩∘⟨ []-cong₂ (sym (B′.¡-unique _)) (pullˡ B′.coproduct.inject₂) ⟩
F.₁ A′.[ A′.initial.! , A.id ] ∘ B′.[ B′.initial.! , F.₁ i₂ ∘ B.id ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟩
B′.[ _ ∘ B′.initial.! , F.₁ A′.[ A′.initial.! , A.id ] ∘ F.₁ i₂ ∘ B.id ] ≈⟨ []-cong₂ (sym (B′.¡-unique _)) (pullˡ ([ F.F ]-resp-∘ A′.coproduct.inject₂)) ⟩
B′.[ B′.initial.! , F.₁ A.id ∘ B.id ] ≈⟨ []-congˡ (elimˡ F.identity) ⟩
B′.[ B′.initial.! , B.id ] ∎
unitaryʳ
: {X : A.Obj}
→ F.₁ A′.[ A′.id {X} , A′.initial.! ]
∘ B′.[ F.₁ i₁ , F.₁ i₂ ]
∘ B′.[ B′.i₁ ∘ B.id , B′.i₂ ∘ B′.initial.! ]
≈ B′.[ B.id , B′.initial.! ]
unitaryʳ {X} = begin
F.₁ A′.[ A.id , A′.initial.! ] ∘ B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.[ B′.i₁ ∘ B.id , _ ] ≈⟨ refl⟩∘⟨ B′.coproduct.∘-distribˡ-[] ⟩
_ ∘ B′.[ B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.i₁ ∘ B.id , _ ∘ B′.i₂ ∘ B′.initial.! ] ≈⟨ refl⟩∘⟨ []-cong₂ (pullˡ B′.coproduct.inject₁) (sym (B′.¡-unique _)) ⟩
F.₁ A′.[ A.id , A′.initial.! ] ∘ B′.[ F.₁ i₁ ∘ B.id , B′.initial.! ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟩
B′.[ F.₁ A′.[ A.id , A′.initial.! ] ∘ F.₁ i₁ ∘ B.id , _ ∘ B′.initial.! ] ≈⟨ []-cong₂ (pullˡ ([ F.F ]-resp-∘ A′.coproduct.inject₁)) (sym (B′.¡-unique _)) ⟩
B′.[ F.₁ A.id ∘ B.id , B′.initial.! ] ≈⟨ []-congʳ (elimˡ F.identity) ⟩
B′.[ B.id , B′.initial.! ] ∎
braiding-compat
: {X Y : A.Obj}
→ F.₁ A′.[ i₂ {X} {Y} , i₁ ] ∘ B′.[ F.₁ i₁ , F.₁ i₂ ]
≈ B′.[ F.F₁ i₁ , F.F₁ i₂ ] ∘ B′.[ B′.i₂ , B′.i₁ ]
braiding-compat = begin
F.₁ A′.[ i₂ , i₁ ] ∘ B′.[ F.₁ i₁ , F.₁ i₂ ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟩
B′.[ F.₁ A′.[ i₂ , i₁ ] ∘ F.₁ i₁ , F.₁ A′.[ i₂ , i₁ ] ∘ F.₁ i₂ ] ≈⟨ []-cong₂ ([ F.F ]-resp-∘ A′.coproduct.inject₁) ([ F.F ]-resp-∘ A′.coproduct.inject₂) ⟩
B′.[ F.₁ i₂ , F.₁ i₁ ] ≈⟨ []-cong₂ B′.coproduct.inject₂ B′.coproduct.inject₁ ⟨
B′.[ B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.i₂ , B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.i₁ ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟨
B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.[ B′.i₂ , B′.i₁ ] ∎
open B-proofs
identity : Lax.SymmetricMonoidalNaturalIsomorphism (F₁ (Functor.Exact.idREF {o} {ℓ} {e} {A})) (idF-SymmetricMonoidal (F₀ A))
identity {A} = record
{ U = ≃-refl
; F⇒G-isMonoidal = record
{ ε-compat = ¡-unique₂ (id ∘ ¡) id
; ⊗-homo-compat = refl⟩∘⟨ sym ([]-cong₂ identityʳ identityʳ)
}
}
where
open FinitelyCocompleteCategory A
open HomReasoning
open Equiv
homomorphism
: {F : RightExactFunctor A B}
{G : RightExactFunctor B C}
→ Lax.SymmetricMonoidalNaturalIsomorphism
(F₁ {A} {C} (∘-RightExactFunctor G F))
(∘-SymmetricMonoidal (F₁ {B} {C} G) (F₁ {A} {B} F))
homomorphism {A} {B} {C} {F} {G} = record
{ U = ≃-refl
; F⇒G-isMonoidal = record
{ ε-compat = ¡-unique₂ (id ∘ ¡) (G.₁ B.¡ ∘ ¡)
; ⊗-homo-compat =
identityˡ
○ sym
([]-cong₂
([ G.F ]-resp-∘ B.coproducts.inject₁)
([ G.F ]-resp-∘ B.coproducts.inject₂))
○ sym ∘-distribˡ-[]
○ pushʳ (introʳ C.⊗.identity)
}
}
where
module A = FinitelyCocompleteCategory A
module B = FinitelyCocompleteCategory B
open FinitelyCocompleteCategory C
module C = SymmetricMonoidalCategory (F₀ C)
open HomReasoning
open Equiv
open ⇒-Reasoning U
module F = RightExactFunctor F
module G = RightExactFunctor G
module _ {F G : RightExactFunctor A B} where
module F = RightExactFunctor F
module G = RightExactFunctor G
F-resp-≈
: NaturalIsomorphism F.F G.F
→ Lax.SymmetricMonoidalNaturalIsomorphism (F₁ {A} {B} F) (F₁ {A} {B} G)
F-resp-≈ F≃G = record
{ U = F≃G
; F⇒G-isMonoidal = record
{ ε-compat = sym (¡-unique (⇒.η A.⊥ ∘ ¡))
; ⊗-homo-compat =
∘-distribˡ-[]
○ []-cong₂ (⇒.commute A.i₁) (⇒.commute A.i₂)
○ sym []∘+₁
}
}
where
module A = FinitelyCocompleteCategory A
open NaturalIsomorphism F≃G
open FinitelyCocompleteCategory B
open HomReasoning
open Equiv
Underlying : Functor FinitelyCocompletes SymMonCat
Underlying = record
{ F₀ = F₀
; F₁ = F₁
; identity = λ { {X} → identity {X} }
; homomorphism = λ { {X} {Y} {Z} {F} {G} → homomorphism {X} {Y} {Z} {F} {G} }
; F-resp-≈ = λ { {X} {Y} {F} {G} → F-resp-≈ {X} {Y} {F} {G} }
}
|