blob: 66dc4c062c6b9d1156114365319860610f215861 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
{-# OPTIONS --without-K --safe #-}
open import Level using (Level)
open import Categories.Category.Monoidal using (BraidedMonoidalCategory)
open import Categories.Functor.Monoidal.Braided using (module Strong)
open Strong using (BraidedMonoidalFunctor)
module Functor.Monoidal.Braided.Strong.Properties
{o o′ ℓ ℓ′ e e′ : Level}
{C : BraidedMonoidalCategory o ℓ e}
{D : BraidedMonoidalCategory o′ ℓ′ e′}
(F,φ,ε : BraidedMonoidalFunctor C D) where
import Categories.Category.Construction.Core as Core
import Categories.Category.Monoidal.Utilities as ⊗-Utilities
import Functor.Monoidal.Strong.Properties as MonoidalProp
open import Categories.Functor.Properties using ([_]-resp-≅)
private
module C = BraidedMonoidalCategory C
module D = BraidedMonoidalCategory D
open D
open Core.Shorthands U using (_∘ᵢ_; idᵢ; _≈ᵢ_; ⌞_⌟; to-≈; _≅_; module HomReasoningᵢ)
open ⊗-Utilities monoidal using (_⊗ᵢ_)
open BraidedMonoidalFunctor F,φ,ε
open MonoidalProp monoidalFunctor public
private
variable
A B : Obj
X Y : C.Obj
σ : A ⊗₀ B ≅ B ⊗₀ A
σ = braiding.FX≅GX
σ⇐ : B ⊗₀ A ⇒ A ⊗₀ B
σ⇐ = braiding.⇐.η _
Fσ : F₀ (X C.⊗₀ Y) ≅ F₀ (Y C.⊗₀ X)
Fσ = [ F ]-resp-≅ C.braiding.FX≅GX
Fσ⇐ : F₀ (Y C.⊗₀ X) ⇒ F₀ (X C.⊗₀ Y)
Fσ⇐ = F₁ (C.braiding.⇐.η _)
φ : F₀ X ⊗₀ F₀ Y ≅ F₀ (X C.⊗₀ Y)
φ = ⊗-homo.FX≅GX
open HomReasoning
open Shorthands using (φ⇐)
braiding-compatᵢ : Fσ {X} {Y} ∘ᵢ φ ≈ᵢ φ ∘ᵢ σ
braiding-compatᵢ = ⌞ braiding-compat ⌟
braiding-compat-inv : φ⇐ ∘ Fσ⇐ {X} {Y} ≈ σ⇐ ∘ φ⇐
braiding-compat-inv = to-≈ braiding-compatᵢ
|