1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category)
open import Categories.Category.Cocartesian.Bundle using (CocartesianCategory)
open import Categories.Category.Construction.Monoids using (Monoids)
open import Categories.Category.Monoidal.Bundle using (MonoidalCategory)
open import Categories.Functor using (Functor) renaming (_∘F_ to _∙_)
open import Level using (Level)
module Functor.Monoidal.Construction.ListOf
{o o′ ℓ ℓ′ e e′ : Level}
{𝒞 : CocartesianCategory o ℓ e}
{S : MonoidalCategory o′ ℓ′ e′}
(let module 𝒞 = CocartesianCategory 𝒞)
(let module S = MonoidalCategory S)
(G : Functor 𝒞.U S.U)
(M : Functor S.U (Monoids S.monoidal))
where
import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
import Categories.Category.Monoidal.Utilities as ⊗-Util
import Categories.Morphism.Reasoning as ⇒-Reasoning
import Categories.Object.Monoid as MonoidObject
open import Categories.Category.Cocartesian using (module CocartesianMonoidal)
open import Categories.Category.Product using (_⁂_)
open import Categories.Functor.Monoidal using (MonoidalFunctor; IsMonoidalFunctor)
open import Categories.Functor.Properties using ([_]-resp-square; [_]-resp-∘)
open import Categories.Morphism using (_≅_)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Data.Product using (_,_)
module G = Functor G
module M = Functor M
module 𝒞-M = CocartesianMonoidal 𝒞.U 𝒞.cocartesian
open 𝒞 using (⊥; -+-; _+_; _+₁_; i₁; i₂; inject₁; inject₂)
module +-assoc {n} {m} {o} = _≅_ (𝒞.+-assoc {n} {m} {o})
module +-λ {n} = _≅_ (𝒞-M.⊥+A≅A {n})
module +-ρ {n} = _≅_ (𝒞-M.A+⊥≅A {n})
module _ where
open 𝒞
open ⇒-Reasoning U
open ⊗-Reasoning 𝒞-M.+-monoidal
module _ {n m o : Obj} where
private
+-α : (n + m) + o 𝒞.⇒ n + (m + o)
+-α = +-assoc.to {n} {m} {o}
+-α∘i₂ : +-α ∘ i₂ ≈ i₂ ∘ i₂
+-α∘i₂ = inject₂
+-α∘i₁∘i₁ : (+-α ∘ i₁) ∘ i₁ ≈ i₁
+-α∘i₁∘i₁ = inject₁ ⟩∘⟨refl ○ inject₁
+-α∘i₁∘i₂ : (+-α ∘ i₁) ∘ i₂ ≈ i₂ ∘ i₁
+-α∘i₁∘i₂ = inject₁ ⟩∘⟨refl ○ inject₂
module _ {n : Obj} where
+-ρ∘i₁ : +-ρ.from {n} ∘ i₁ ≈ id
+-ρ∘i₁ = inject₁
+-λ∘i₂ : +-λ.from {n} ∘ i₂ ≈ id
+-λ∘i₂ = inject₂
open S
open Functor
open MonoidalFunctor
open MonoidObject S.monoidal using (Monoid; Monoid⇒)
open Monoid renaming (assoc to μ-assoc; identityˡ to μ-identityˡ; identityʳ to μ-identityʳ)
open Monoid⇒
Forget : Functor (Monoids monoidal) U
Forget .F₀ = Carrier
Forget .F₁ = arr
Forget .identity = Equiv.refl
Forget .homomorphism = Equiv.refl
Forget .F-resp-≈ x = x
𝒞-MC : MonoidalCategory o ℓ e
𝒞-MC = record { monoidal = 𝒞-M.+-monoidal }
List : Functor U U
List = Forget ∙ M
module List = Functor List
List∘G : Functor 𝒞.U U
List∘G = List ∙ G
module LG = Functor List∘G
[] : {A : Obj} → unit ⇒ List.₀ A
[] {A} = η (M.₀ A)
++ : {A : Obj} → List.₀ A ⊗₀ List.₀ A ⇒ List.₀ A
++ {A} = μ (M.₀ A)
++⇒ : {A B : Obj} (f : A ⇒ B) → List.₁ f ∘ ++ ≈ ++ ∘ List.₁ f ⊗₁ List.₁ f
++⇒ f = preserves-μ (M.₁ f)
[]⇒ : {A B : Obj} (f : A ⇒ B) → List.₁ f ∘ [] ≈ []
[]⇒ f = preserves-η (M.₁ f)
++-⊗ : {n m : 𝒞.Obj} → LG.₀ n ⊗₀ LG.₀ m ⇒ LG.₀ (n + m)
++-⊗ = ++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂
open ⇒-Reasoning U
open ⊗-Reasoning monoidal
module _ {n n′ m m′ : 𝒞.Obj} (f : n 𝒞.⇒ n′) (g : m 𝒞.⇒ m′) where
LG[+₁∘i₁] : LG.₁ (f +₁ g) ∘ LG.₁ i₁ ≈ LG.₁ i₁ ∘ LG.₁ f
LG[+₁∘i₁] = [ List∘G ]-resp-square inject₁
LG[+₁∘i₂] : LG.₁ (f +₁ g) ∘ LG.₁ i₂ ≈ LG.₁ i₂ ∘ LG.₁ g
LG[+₁∘i₂] = [ List∘G ]-resp-square inject₂
++-⊗-commute : ++-⊗ ∘ LG.₁ f ⊗₁ LG.₁ g ≈ LG.₁ (f +₁ g) ∘ ++-⊗
++-⊗-commute = begin
(++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ∘ LG.₁ f ⊗₁ LG.₁ g ≈⟨ pushʳ (parallel LG[+₁∘i₁] LG[+₁∘i₂]) ⟨
++ ∘ (LG.₁ (f +₁ g) ⊗₁ LG.₁ (f +₁ g)) ∘ (LG.₁ i₁ ⊗₁ LG.₁ i₂) ≈⟨ extendʳ (++⇒ (G.₁ (f +₁ g))) ⟨
LG.₁ (f +₁ g) ∘ ++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂ ∎
open ⊗-Util.Shorthands monoidal
++-homo : NaturalTransformation (⊗ ∙ (List∘G ⁂ List∘G)) (List∘G ∙ -+-)
++-homo = ntHelper record
{ η = λ (n , m) → ++-⊗ {n} {m}
; commute = λ { {n , m} {n′ , m′} (f , g) → ++-⊗-commute f g }
}
α-++-⊗
: {n m o : 𝒞.Obj}
→ LG.₁ (+-assoc.to {n} {m} {o})
∘ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂)
∘ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ⊗₁ id
≈ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂)
∘ id ⊗₁ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂)
∘ α⇒
α-++-⊗ {n} {m} {o} = begin
LG.₁ +-α ∘ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ∘ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ⊗₁ id ≈⟨ refl⟩∘⟨ pullʳ merge₁ʳ ⟩
LG.₁ +-α ∘ ++ ∘ (LG.₁ i₁ ∘ ++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ⊗₁ LG.₁ i₂ ≈⟨ extendʳ (++⇒ (G.₁ +-α)) ⟩
++ ∘ LG.₁ +-α ⊗₁ LG.₁ +-α ∘ (LG.₁ i₁ ∘ ++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ⊗₁ LG.₁ i₂ ≈⟨ refl⟩∘⟨ ⊗-distrib-over-∘ ⟨
++ ∘ (LG.₁ +-α ∘ LG.₁ i₁ ∘ ++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ⊗₁ (LG.₁ +-α ∘ LG.₁ i₂) ≈⟨ refl⟩∘⟨ pullˡ (Equiv.sym LG.homomorphism) ⟩⊗⟨ [ List∘G ]-resp-square +-α∘i₂ ⟩
++ ∘ (LG.₁ (+-α 𝒞.∘ i₁) ∘ ++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₂) ≈⟨ refl⟩∘⟨ extendʳ (++⇒ (G.₁ (+-α 𝒞.∘ i₁))) ⟩⊗⟨refl ⟩
++ ∘ (++ ∘ LG.₁ (+-α 𝒞.∘ i₁) ⊗₁ LG.₁ (+-α 𝒞.∘ i₁) ∘ _) ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₂) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ ⊗-distrib-over-∘) ⟩⊗⟨refl ⟨
++ ∘ (++ ∘ _ ⊗₁ (LG.₁ (+-α 𝒞.∘ i₁) ∘ LG.₁ i₂)) ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₂) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ [ List∘G ]-resp-∘ +-α∘i₁∘i₁ ⟩⊗⟨ [ List∘G ]-resp-square +-α∘i₁∘i₂) ⟩⊗⟨refl ⟩
++ ∘ (++ ∘ LG.₁ i₁ ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₁)) ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₂) ≈⟨ refl⟩∘⟨ split₁ˡ ⟩
++ ∘ ++ ⊗₁ id ∘ (LG.₁ i₁ ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₁)) ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₂) ≈⟨ extendʳ (μ-assoc (M.₀ (G.₀ (n + (m + o))))) ⟩
++ ∘ (id ⊗₁ ++ ∘ α⇒) ∘ (LG.₁ i₁ ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₁)) ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₂) ≈⟨ refl⟩∘⟨ assoc ⟩
++ ∘ id ⊗₁ ++ ∘ α⇒ ∘ (LG.₁ i₁ ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₁)) ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₂) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ assoc-commute-from ⟩
++ ∘ id ⊗₁ ++ ∘ LG.₁ i₁ ⊗₁ ((LG.₁ i₂ ∘ LG.₁ i₁) ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₂)) ∘ α⇒ ≈⟨ refl⟩∘⟨ pullˡ merge₂ˡ ⟩
++ ∘ LG.₁ i₁ ⊗₁ (++ ∘ (LG.₁ i₂ ∘ LG.₁ i₁) ⊗₁ (LG.₁ i₂ ∘ LG.₁ i₂)) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (refl⟩∘⟨ ⊗-distrib-over-∘) ⟩∘⟨refl ⟩
++ ∘ LG.₁ i₁ ⊗₁ (++ ∘ LG.₁ i₂ ⊗₁ LG.₁ i₂ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (extendʳ (++⇒ (G.₁ i₂))) ⟩∘⟨refl ⟨
++ ∘ LG.₁ i₁ ⊗₁ (LG.₁ i₂ ∘ ++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ∘ α⇒ ≈⟨ pushʳ (pushˡ split₂ʳ) ⟩
(++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ∘ id ⊗₁ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ∘ α⇒ ∎
where
+-α : (n + m) + o 𝒞.⇒ n + (m + o)
+-α = +-assoc.to {n} {m} {o}
module _ {n : 𝒞.Obj} where
++-[]ʳ : {A B : Obj} (f : A ⇒ B) → ++ ∘ List.₁ f ⊗₁ [] ≈ List.₁ f ∘ ρ⇒
++-[]ʳ {A} {B} f = begin
++ ∘ List.₁ f ⊗₁ [] ≈⟨ refl⟩∘⟨ serialize₂₁ ⟩
++ ∘ id ⊗₁ [] ∘ List.₁ f ⊗₁ id ≈⟨ pullˡ (Equiv.sym (μ-identityʳ (M.₀ B))) ⟩
ρ⇒ ∘ List.₁ f ⊗₁ id ≈⟨ unitorʳ-commute-from ⟩
List.₁ f ∘ ρ⇒ ∎
++-[]ˡ : {A B : Obj} (f : A ⇒ B) → ++ ∘ [] ⊗₁ List.₁ f ≈ List.₁ f ∘ λ⇒
++-[]ˡ {A} {B} f = begin
++ ∘ [] ⊗₁ List.₁ f ≈⟨ refl⟩∘⟨ serialize₁₂ ⟩
++ ∘ [] ⊗₁ id ∘ id ⊗₁ List.₁ f ≈⟨ pullˡ (Equiv.sym (μ-identityˡ (M.₀ B))) ⟩
λ⇒ ∘ id ⊗₁ List.₁ f ≈⟨ unitorˡ-commute-from ⟩
List.₁ f ∘ λ⇒ ∎
++-⊗-λ
: LG.₁ +-λ.from ∘ (++ ∘ LG.₁ (i₁ {⊥} {n}) ⊗₁ LG.₁ i₂) ∘ [] ⊗₁ id
≈ λ⇒
++-⊗-λ = begin
LG.₁ +-λ.from ∘ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ∘ [] ⊗₁ id ≈⟨ refl⟩∘⟨ pullʳ merge₁ʳ ⟩
LG.₁ +-λ.from ∘ ++ ∘ (LG.₁ i₁ ∘ []) ⊗₁ LG.₁ i₂ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ []⇒ (G.₁ i₁) ⟩⊗⟨refl ⟩
LG.₁ +-λ.from ∘ ++ ∘ [] ⊗₁ LG.₁ i₂ ≈⟨ refl⟩∘⟨ ++-[]ˡ (G.₁ i₂) ⟩
LG.₁ +-λ.from ∘ LG.₁ i₂ ∘ λ⇒ ≈⟨ cancelˡ ([ List∘G ]-resp-∘ +-λ∘i₂ ○ LG.identity) ⟩
λ⇒ ∎
++-⊗-ρ
: LG.₁ +-ρ.from ∘ (++ ∘ LG.₁ (i₁ {n}) ⊗₁ LG.₁ i₂) ∘ id ⊗₁ []
≈ ρ⇒
++-⊗-ρ = begin
LG.₁ +-ρ.from ∘ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ∘ id ⊗₁ [] ≈⟨ refl⟩∘⟨ pullʳ merge₂ʳ ⟩
LG.₁ +-ρ.from ∘ ++ ∘ LG.₁ i₁ ⊗₁ (LG.₁ i₂ ∘ []) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ []⇒ (G.₁ i₂) ⟩
LG.₁ +-ρ.from ∘ ++ ∘ LG.₁ i₁ ⊗₁ [] ≈⟨ refl⟩∘⟨ ++-[]ʳ (G.₁ i₁) ⟩
LG.₁ +-ρ.from ∘ LG.₁ i₁ ∘ ρ⇒ ≈⟨ cancelˡ ([ List∘G ]-resp-∘ +-ρ∘i₁ ○ LG.identity) ⟩
ρ⇒ ∎
open IsMonoidalFunctor
ListOf,++,[] : MonoidalFunctor 𝒞-MC S
ListOf,++,[] .F = List∘G
ListOf,++,[] .isMonoidal .ε = []
ListOf,++,[] .isMonoidal .⊗-homo = ++-homo
ListOf,++,[] .isMonoidal .associativity = α-++-⊗
ListOf,++,[] .isMonoidal .unitaryˡ = ++-⊗-λ
ListOf,++,[] .isMonoidal .unitaryʳ = ++-⊗-ρ
|