aboutsummaryrefslogtreecommitdiff
path: root/Functor/Monoidal/Instance/Nat/Preimage.agda
blob: e6874431b6d89c35a08e47fe5b4a342d5d4631e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
{-# OPTIONS --without-K --safe #-}

module Functor.Monoidal.Instance.Nat.Preimage where

open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian)
open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
open import Categories.Category.BinaryProducts using (module BinaryProducts)
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts)
open import Categories.Category.Product using (_⁂_)
open import Categories.Functor using (_∘F_)
open import Data.Subset.Functional using (Subset)
open import Data.Nat.Base using (ℕ; _+_)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Product.Base using (_,_; _×_; Σ)
open import Data.Vec.Functional using ([]; _++_)
open import Data.Vec.Functional.Properties using (++-cong)
open import Data.Vec.Functional using (Vector; [])
open import Function.Bundles using (Func; _⟶ₛ_)
open import Functor.Instance.Nat.Preimage using (Preimage; Subsetₛ)
open import Level using (0)

open Cartesian (Setoids-Cartesian {0} {0}) using (products)
open BinaryProducts products using (-×-)
open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-swap; +₁∘+-swap)
open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap)

open import Data.Fin.Base using (Fin; splitAt; join; _↑ˡ_; _↑ʳ_)
open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ)
open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂)
open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘)
open import Data.Fin.Preimage using (preimage)
open import Function.Base using (_∘_; id)
open import Relation.Binary.PropositionalEquality as  using (_≡_; _≗_; module ≡-Reasoning)
open import Data.Bool.Base using (Bool)

open Func
Preimage-ε : SingletonSetoid {0} {0} ⟶ₛ Subsetₛ 0
to Preimage-ε x = []
cong Preimage-ε x ()

++ₛ : {n m : }  Subsetₛ n ×ₛ Subsetₛ m ⟶ₛ Subsetₛ (n + m)
to ++ₛ (xs , ys) = xs ++ ys
cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys

preimage-++
    : {n n′ m m′ : }
      (f : Fin n  Fin n′)
      (g : Fin m  Fin m′)
      {xs : Subset n′}
      {ys : Subset m′}
     preimage f xs ++ preimage g ys  preimage (f +₁ g) (xs ++ ys)
preimage-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin
    (xs  f ++ ys  g) e                                            ≡⟨ [,]-map (splitAt n e)     [ xs , ys ]′ (map f g (splitAt n e))                            ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e)))     [ xs , ys ]′ (splitAt n′ (join n′ m′ (map f g (splitAt n e))))  ≡⟨ ≡.cong ([ xs , ys ]′  splitAt n′) ([,]-map (splitAt n e))     [ xs , ys ]′ (splitAt n′ ((f +₁ g) e))                            where
    open ≡-Reasoning

⊗-homomorphism : NaturalTransformation (-×- ∘F (Preimage  Preimage)) (Preimage ∘F -+-)
⊗-homomorphism = ntHelper record
    { η = λ (n , m)  ++ₛ {n} {m}
    ; commute = λ { {n′ , m′} {n , m} (f , g) {xs , ys} e  preimage-++ f g e }
    }

open import Category.Instance.Setoids.SymmetricMonoidal {0} using (Setoids-×)
open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Lax)
open Lax using (SymmetricMonoidalFunctor)

++-assoc
    : {m n o : }
      (X : Subset m)
      (Y : Subset n)
      (Z : Subset o)
     ((X ++ Y) ++ Z)  +-assocʳ {m}  X ++ (Y ++ Z)
++-assoc {m} {n} {o} X Y Z i = begin
    ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩
    [ [ X , Y ]′  splitAt m , Z ]′ (splitAt (m + n) (+-assocʳ {m} i))          ≡⟨ [,]-cong ([,]-cong (inv  X) (inv  Y)  splitAt m) (inv  Z) (splitAt (m + n) (+-assocʳ {m} i))     [ [ b  X′ , b  Y′ ]′  splitAt m , b  Z′ ]′ (splitAt _ (+-assocʳ {m} i)) ≡⟨ [-,]-cong ([,]-∘ b  splitAt m) (splitAt (m + n) (+-assocʳ {m} i))     [ b  [ X′ , Y′ ]′  splitAt m , b  Z′ ]′ (splitAt _ (+-assocʳ {m} i))     ≡⟨ [,]-∘ b (splitAt (m + n) (+-assocʳ {m} i))     b ([ [ X′ , Y′ ]′  splitAt m , Z′ ]′ (splitAt _ (+-assocʳ {m} i)))         ≡⟨ ≡.cong b ([]∘assocʳ {2} {m} i)     b ([ X′ , [ Y′ , Z′ ]′  splitAt n ]′ (splitAt m i))                        ≡⟨ [,]-∘ b (splitAt m i)     [ b  X′ , b  [ Y′ , Z′ ]′  splitAt n ]′ (splitAt m i)                    ≡⟨ [,-]-cong ([,]-∘ b  splitAt n) (splitAt m i)     [ b  X′ , [ b  Y′ , b  Z′ ]′  splitAt n ]′ (splitAt m i)                ≡⟨ [,]-cong (inv  X) ([,]-cong (inv  Y) (inv  Z)  splitAt n) (splitAt m i)     [ X , [ Y , Z ]′  splitAt n ]′ (splitAt m i)                               ≡⟨⟩
    (X ++ (Y ++ Z)) i                                                             where
    open Bool
    open Fin
    f : Bool  Fin 2
    f false = zero
    f true = suc zero
    b : Fin 2  Bool
    b zero = false
    b (suc zero) = true
    inv : b  f  id
    inv false = ≡.refl
    inv true = ≡.refl
    X′ : Fin m  Fin 2
    X′ = f  X
    Y′ : Fin n  Fin 2
    Y′ = f  Y
    Z′ : Fin o  Fin 2
    Z′ = f  Z
    open ≡-Reasoning

Preimage-unitaryˡ
    : {n : }
      (X : Subset n)
     (X ++ [])  (_↑ˡ 0)  X
Preimage-unitaryˡ {n} X i = begin
    [ X , [] ]′ (splitAt _ (i ↑ˡ 0))  ≡⟨ ≡.cong ([ X , [] ]′) (splitAt-↑ˡ n i 0)     [ X , [] ]′ (inj₁ i)              ≡⟨⟩
    X i                                 where
    open ≡-Reasoning

++-swap
    : {n m : }
      (X : Subset n)
      (Y : Subset m)
     (X ++ Y)  +-swap {n}  Y ++ X
++-swap {n} {m} X Y i = begin
    [ X , Y ]′ (splitAt n (+-swap {n} i))           ≡⟨ [,]-cong (inv  X) (inv  Y) (splitAt n (+-swap {n} i))     [ b  X′ , b  Y′ ]′ (splitAt n (+-swap {n} i)) ≡⟨ [,]-∘ b (splitAt n (+-swap {n} i))     b ([ X′ , Y′ ]′ (splitAt n (+-swap {n} i)))     ≡⟨ ≡.cong b ([]∘swap {2} {n} i)     b ([ Y′ , X′ ]′ (splitAt m i))                  ≡⟨ [,]-∘ b (splitAt m i)     [ b  Y′ , b  X′ ]′ (splitAt m i)              ≡⟨ [,]-cong (inv  Y) (inv  X) (splitAt m i)     [ Y  , X ]′ (splitAt m i)                         where
    open Bool
    open Fin
    f : Bool  Fin 2
    f false = zero
    f true = suc zero
    b : Fin 2  Bool
    b zero = false
    b (suc zero) = true
    inv : b  f  id
    inv false = ≡.refl
    inv true = ≡.refl
    X′ : Fin n  Fin 2
    X′ = f  X
    Y′ : Fin m  Fin 2
    Y′ = f  Y
    open ≡-Reasoning

open SymmetricMonoidalFunctor
Preimage,++,[] : SymmetricMonoidalFunctor
Preimage,++,[] .F = Preimage
Preimage,++,[] .isBraidedMonoidal = record
    { isMonoidal = record
        { ε = Preimage-ε
        ; ⊗-homo = ⊗-homomorphism
        ; associativity = λ { {m} {n} {o} {(X , Y) , Z} i  ++-assoc X Y Z i }
        ; unitaryˡ = λ _  ≡.refl
        ; unitaryʳ = λ { {n} {X , _} i  Preimage-unitaryˡ X i }
        }
    ; braiding-compat = λ { {n} {m} {X , Y} i  ++-swap X Y i }
    }