1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
{-# OPTIONS --without-K --safe #-}
module Functor.Monoidal.Instance.Nat.Pull where
import Categories.Morphism as Morphism
open import Level using (0ℓ; Level)
open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×)
open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian)
open import Categories.Category.BinaryProducts using (module BinaryProducts)
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts)
open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
open import Categories.Category.Instance.SingletonSet using () renaming (SingletonSetoid to ⊤ₛ)
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
open import Categories.Category.Product using (_⁂_)
open import Categories.Functor using (_∘F_)
open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Strong)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper)
open import Data.Circuit.Value using (Monoid)
open import Data.Vector using (++-assoc)
open import Data.Fin.Base using (Fin; splitAt; join)
open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_)
open import Data.Fin.Preimage using (preimage)
open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ; splitAt-↑ʳ; join-splitAt)
open import Data.Nat.Base using (ℕ; _+_)
open import Data.Product.Base using (_,_; _×_; Σ; proj₁; proj₂)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Setoid using (∣_∣)
open import Data.Subset.Functional using (Subset)
open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂)
open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘)
open import Data.System.Values Monoid using (Values; <ε>; []-unique; _++_; ++ₛ; splitₛ; _≋_; [])
open import Data.Unit.Polymorphic using (tt)
open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_)
open import Function.Construct.Constant using () renaming (function to Const)
open import Functor.Instance.Nat.Pull using (Pull; Pull-defs)
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning)
module Setoids-× = SymmetricMonoidalCategory Setoids-×
open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
open BinaryProducts products using (-×-)
open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-comm; +-swap; +₁∘+-swap; i₁; i₂)
open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap)
open Func
open Morphism (Setoids-×.U) using (_≅_; module Iso)
open Strong using (SymmetricMonoidalFunctor)
open ≡-Reasoning
private
open _≅_
open Iso
Pull-ε : ⊤ₛ ≅ Values 0
from Pull-ε = Const ⊤ₛ (Values 0) []
to Pull-ε = Const (Values 0) ⊤ₛ tt
isoˡ (iso Pull-ε) = tt
isoʳ (iso Pull-ε) {x} = []-unique [] x
opaque
unfolding _++_
unfolding Pull-defs
Pull-++
: {n n′ m m′ : ℕ}
(f : Fin n → Fin n′)
(g : Fin m → Fin m′)
{xs : ∣ Values n′ ∣}
{ys : ∣ Values m′ ∣}
→ (Pull.₁ f ⟨$⟩ xs) ++ (Pull.₁ g ⟨$⟩ ys) ≋ Pull.₁ (f +₁ g) ⟨$⟩ (xs ++ ys)
Pull-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin
(xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨
[ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨
(xs ++ ys) (join n′ m′ (map f g (splitAt n e))) ≡⟨ ≡.cong (xs ++ ys) ([,]-map (splitAt n e)) ⟩
(xs ++ ys) ((f +₁ g) e) ∎
module _ {n m : ℕ} where
opaque
unfolding splitₛ
open import Function.Construct.Setoid using (setoid)
open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_)
open import Function.Construct.Setoid using (_∙_)
open import Function.Construct.Identity using () renaming (function to Id)
split∘++ : splitₛ ∙ ++ₛ ≈ Id (Values n ×ₛ Values m)
split∘++ {xs , ys} .proj₁ i = ≡.cong [ xs , ys ]′ (splitAt-↑ˡ n i m)
split∘++ {xs , ys} .proj₂ i = ≡.cong [ xs , ys ]′ (splitAt-↑ʳ n m i)
++∘split : ++ₛ {n} ∙ splitₛ ≈ Id (Values (n + m))
++∘split {x} i = ≡.trans (≡.sym ([,]-∘ x (splitAt n i))) (≡.cong x (join-splitAt n m i))
⊗-homomorphism : NaturalIsomorphism (-×- ∘F (Pull ⁂ Pull)) (Pull ∘F -+-)
⊗-homomorphism = niHelper record
{ η = λ (n , m) → ++ₛ {n} {m}
; η⁻¹ = λ (n , m) → splitₛ {n} {m}
; commute = λ { {n , m} {n′ , m′} (f , g) {xs , ys} → Pull-++ f g }
; iso = λ (n , m) → record
{ isoˡ = split∘++
; isoʳ = ++∘split
}
}
module _ {n m : ℕ} where
opaque
unfolding Pull-++
Pull-i₁
: (X : ∣ Values n ∣)
(Y : ∣ Values m ∣)
→ Pull.₁ i₁ ⟨$⟩ (X ++ Y) ≋ X
Pull-i₁ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m)
Pull-i₂
: (X : ∣ Values n ∣)
(Y : ∣ Values m ∣)
→ Pull.₁ i₂ ⟨$⟩ (X ++ Y) ≋ Y
Pull-i₂ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i)
opaque
unfolding Pull-++
Push-assoc
: {m n o : ℕ}
(X : ∣ Values m ∣)
(Y : ∣ Values n ∣)
(Z : ∣ Values o ∣)
→ Pull.₁ (+-assocʳ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z) ≋ X ++ (Y ++ Z)
Push-assoc {m} {n} {o} X Y Z i = ++-assoc X Y Z i
Pull-swap
: {n m : ℕ}
(X : ∣ Values n ∣)
(Y : ∣ Values m ∣)
→ Pull.₁ (+-swap {n}) ⟨$⟩ (X ++ Y) ≋ Y ++ X
Pull-swap {n} {m} X Y i = begin
((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩
[ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (Pull-i₂ X Y) (splitAt m i) ⟩
[ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (Pull-i₁ X Y) (splitAt m i) ⟩
[ Y , X ]′ (splitAt m i) ≡⟨⟩
(Y ++ X) i ∎
open SymmetricMonoidalFunctor
Pull,++,[] : SymmetricMonoidalFunctor
Pull,++,[] .F = Pull
Pull,++,[] .isBraidedMonoidal = record
{ isStrongMonoidal = record
{ ε = Pull-ε
; ⊗-homo = ⊗-homomorphism
; associativity = λ { {_} {_} {_} {(X , Y) , Z} → Push-assoc X Y Z }
; unitaryˡ = λ { {n} {_ , X} → Pull-i₂ {0} {n} [] X }
; unitaryʳ = λ { {n} {X , _} → Pull-i₁ {n} {0} X [] }
}
; braiding-compat = λ { {n} {m} {X , Y} → Pull-swap X Y }
}
module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[]
|