aboutsummaryrefslogtreecommitdiff
path: root/Functor/Monoidal/Instance/Nat/Push.agda
blob: b53282db202211a721f07fcfef9e18286406c4b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
{-# OPTIONS --without-K --safe #-}

module Functor.Monoidal.Instance.Nat.Push where

open import Categories.Category.Instance.Nat using (Nat)
open import Data.Bool.Base using (Bool; false)
open import Data.Subset.Functional using (Subset; ⁅_⁆; )
open import Function.Base using (_∘_; case_of_; _$_; id)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Level using (0ℓ; Level)
open import Relation.Binary using (Rel; Setoid)
open import Functor.Instance.Nat.Push using (Push; Push-defs)
open import Categories.Category.Instance.SingletonSet using () renaming (SingletonSetoid to ⊤ₛ)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Data.Vec.Functional as Vec using (Vector)
open import Data.Vector using (++-assoc; ++-↑ˡ; ++-↑ʳ)
-- open import Data.Vec.Functional.Properties using (++-cong)
open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
open import Function.Construct.Constant using () renaming (function to Const)
open import Categories.Category.BinaryProducts using (module BinaryProducts)
open import Categories.Category.Cartesian using (Cartesian)
open Cartesian (Setoids-Cartesian {0} {0}) using (products)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
open import Categories.Category.Cocartesian using (Cocartesian)
open import Categories.Category.Product using (_⁂_)
open import Categories.Functor using () renaming (_∘F_ to _∘′_)
open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assoc; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Nat using (ℕ; _+_)
open import Data.Fin using (Fin)
open import Data.Product.Base using (_,_; _×_; Σ)
open import Data.Fin.Preimage using (preimage; preimage-⊥; preimage-cong₂)
open import Functor.Monoidal.Instance.Nat.Preimage using (preimage-++)
open import Data.Sum.Base using ([_,_]; [_,_]′; inj₁; inj₂)
open import Data.Sum.Properties using ([,]-cong; [,-]-cong; [-,]-cong; [,]-∘; [,]-map)
open import Data.Circuit.Merge using (merge-with; merge; merge-⊥; merge-[]; ⁅⁆-++; merge-++; merge-cong₁; merge-cong₂; merge-suc; _when_; join-merge; merge-preimage-ρ; merge-⁅⁆)
open import Data.Circuit.Value using (Value; join; join-comm; join-assoc; Monoid)
open import Data.Fin.Base using (splitAt; _↑ˡ_; _↑ʳ_) renaming (join to joinAt)
open import Data.Fin.Properties using (splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; splitAt⁻¹-↑ʳ; ↑ˡ-injective; ↑ʳ-injective; _≟_)
open import Relation.Binary.PropositionalEquality as  using (_≡_; _≢_; _≗_; module ≡-Reasoning)
open BinaryProducts products using (-×-)
open Value using (U)
open Bool using (false)

open import Function.Bundles using (Equivalence)
open import Category.Monoidal.Instance.Nat using (Nat,+,0)
open import Category.Instance.Setoids.SymmetricMonoidal {0} {0} using (Setoids-×)
open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax)
open Lax using (SymmetricMonoidalFunctor)
open import Categories.Morphism Nat using (_≅_)
open import Function.Bundles using (Inverse)
open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_)
open Dual.op-binaryProducts using () renaming (assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap)
open import Relation.Nullary.Decidable using (does; does-⇔; dec-false)
open import Data.Setoid using (∣_∣)

open open import Data.System.Values Monoid using (Values; <ε>; ++ₛ; _++_; head; tail; _≋_)

open Func
open ≡-Reasoning

private

  Push-ε : ⊤ₛ {0} {0} ⟶ₛ Values 0
  Push-ε = Const ⊤ₛ (Values 0) <ε>

  opaque

    unfolding _++_

    unfolding Push-defs
    Push-++
        : {n n′ m m′ :  }
         (f : Fin n  Fin n′)
         (g : Fin m  Fin m′)
         (xs :  Values n )
         (ys :  Values m )
         (Push.₁ f ⟨$⟩ xs) ++ (Push.₁ g ⟨$⟩ ys)
         Push.₁ (f +₁ g) ⟨$⟩ (xs ++ ys)
    Push-++ {n} {n′} {m} {m′} f g xs ys i = begin
        ((merge xs  preimage f  ⁅_⁆) ++ (merge ys  preimage g  ⁅_⁆)) i
            ≡⟨ [,]-cong left right (splitAt n′ i)         [ (λ x  merge (xs ++ ys) _) , (λ x  merge (xs ++ ys) _) ]′ (splitAt n′ i)
            ≡⟨ [,]-∘ (merge (xs ++ ys)  (preimage (f +₁ g))) (splitAt n′ i)         merge (xs ++ ys) (preimage (f +₁ g) ((⁅⁆++⊥ Vec.++ ⊥++⁅⁆) i))     ≡⟨ merge-cong₂ (xs ++ ys) (preimage-cong₂ (f +₁ g) (⁅⁆-++ {n′} i))         merge (xs ++ ys) (preimage (f +₁ g)  i )       where
        ⁅⁆++⊥ : Vector (Subset (n′ + m′)) n′
        ⁅⁆++⊥ x =  x  Vec.++         ⊥++⁅⁆ : Vector (Subset (n′ + m′)) m′
        ⊥++⁅⁆ x =  Vec.++  x         left : (x : Fin n′)  merge xs (preimage f  x )  merge (xs ++ ys) (preimage (f +₁ g) ( x  Vec.++ ))
        left x = begin
            merge xs (preimage f  x )                                   ≡⟨ join-comm U (merge xs (preimage f  x ))             join (merge xs (preimage f  x )) U                          ≡⟨ ≡.cong (join (merge _ _)) (merge-⊥ ys)             join (merge xs (preimage f  x )) (merge ys )               ≡⟨ ≡.cong (join (merge _ _)) (merge-cong₂ ys (preimage-⊥ g))             join (merge xs (preimage f  x )) (merge ys (preimage g ))  ≡⟨ merge-++ xs ys (preimage f  x ) (preimage g )             merge (xs ++ ys) ((preimage f  x ) Vec.++ (preimage g ))   ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g)             merge (xs ++ ys) (preimage (f +₁ g) ( x  Vec.++ ))                 right : (x : Fin m′)  merge ys (preimage g  x )  merge (xs ++ ys) (preimage (f +₁ g) ( Vec.++  x ))
        right x = begin
            merge ys (preimage g  x )                                   ≡⟨⟩
            join U (merge ys (preimage g  x ))                          ≡⟨ ≡.cong (λ h  join h (merge _ _)) (merge-⊥ xs)             join (merge xs ) (merge ys (preimage g  x ))               ≡⟨ ≡.cong (λ h  join h (merge _ _)) (merge-cong₂ xs (preimage-⊥ f))             join (merge xs (preimage f )) (merge ys (preimage g  x ))  ≡⟨ merge-++ xs ys (preimage f ) (preimage g  x )             merge (xs ++ ys) ((preimage f ) Vec.++ (preimage g  x ))   ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g)             merge (xs ++ ys) (preimage (f +₁ g) ( Vec.++  x ))           ⊗-homomorphism : NaturalTransformation (-×- ∘′ (Push  Push)) (Push ∘′ -+-)
  ⊗-homomorphism = ntHelper record
      { η = λ (n , m)  ++ₛ {n} {m}
      ; commute = λ { (f , g) {xs , ys}  Push-++ f g xs ys }
      }

  opaque

    unfolding Push-defs
    unfolding _++_

    Push-assoc
        : {m n o : }
          (X :  Values m )
          (Y :  Values n )
          (Z :  Values o )
         (Push.₁ (+-assocˡ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z))  X ++ Y ++ Z
    Push-assoc {m} {n} {o} X Y Z i = begin
        merge ((X ++ Y) ++ Z) (preimage (+-assocˡ {m})  i )         ≡⟨ merge-preimage-ρ ↔-mno ((X ++ Y) ++ Z)  i          merge (((X ++ Y) ++ Z)  (+-assocʳ {m})) ( i )              ≡⟨⟩
        merge (((X ++ Y) ++ Z)  (+-assocʳ {m})) (preimage id  i )  ≡⟨ merge-cong₁ (++-assoc X Y Z) (preimage id  i )         merge (X ++ (Y ++ Z)) (preimage id  i )                     ≡⟨ Push.identity i         (X ++ (Y ++ Z)) i                                                   where
        open Inverse
        module +-assoc = _≅_ (+-assoc {m} {n} {o})
        ↔-mno : Permutation ((m + n) + o) (m + (n + o))
        ↔-mno .to = +-assocˡ {m}
        ↔-mno .from = +-assocʳ {m}
        ↔-mno .to-cong ≡.refl = ≡.refl
        ↔-mno .from-cong ≡.refl = ≡.refl
        ↔-mno .inverse = (λ { ≡.refl  +-assoc.isoˡ _ }) , λ { ≡.refl  +-assoc.isoʳ _ }

    Push-unitaryˡ
        : {n : }
          (X :  Values n )
         Push.₁ id ⟨$⟩ (<ε> ++ X)  X
    Push-unitaryˡ = merge-⁅⁆

    preimage-++′
        : {n m o : }
          (f : Vector (Fin o) n)
          (g : Vector (Fin o) m)
          (S : Subset o)
         preimage (f Vec.++ g) S  preimage f S Vec.++ preimage g S
    preimage-++′ {n} f g S = [,]-∘ S  splitAt n

    Push-unitaryʳ
        : {n : }
          (X :  Values n )
         Push.₁ (id Vec.++ (λ())) ⟨$⟩ (X ++ (<ε> {0}))  X
    Push-unitaryʳ {n} X i = begin
        merge (X ++ <ε>) (preimage (id Vec.++ (λ ()))  i )     ≡⟨ merge-cong₂ (X Vec.++ <ε>) (preimage-++′ id (λ ())  i )         merge (X ++ <ε>) ( i  Vec.++ preimage (λ ())  i )    ≡⟨ merge-++ X <ε>  i  (preimage (λ ())  i )         join (merge X  i ) (merge <ε> (preimage (λ ())  i )) ≡⟨ ≡.cong (join (merge X  i )) (merge-[] <ε> (preimage (λ ())  i ))         join (merge X  i ) U                                  ≡⟨ join-comm (merge X  i ) U         merge X  i                                            ≡⟨ merge-⁅⁆ X i         X i     Push-swap
        : {n m : }
          (X :  Values n )
          (Y :  Values m )
         Push.₁ (+-swap {m}) ⟨$⟩ (X ++ Y)  (Y ++ X)
    Push-swap {n} {m} X Y i = begin
        merge (X ++ Y) (preimage (+-swap {m})  i )      ≡⟨ merge-preimage-ρ n+m↔m+n (X ++ Y)  i          merge ((X ++ Y)  +-swap {n})  i                ≡⟨ merge-⁅⁆ ((X ++ Y)  (+-swap {n})) i         ((X ++ Y)  +-swap {n}) i                         ≡⟨ [,]-∘ (X ++ Y) (splitAt m i)         [ (X ++ Y)  i₂ , (X ++ Y)  i₁ ]′ (splitAt m i)  ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i)         [ Y , (X ++ Y)  i₁ ]′ (splitAt m i)              ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i)         [ Y , X ]′ (splitAt m i)                          ≡⟨⟩
        (Y ++ X) i                                              where
        open ≡-Reasoning
        open Inverse
        module +-swap = _≅_ (+-comm {m} {n})
        n+m↔m+n : Permutation (n + m) (m + n)
        n+m↔m+n .to = +-swap.to
        n+m↔m+n .from = +-swap.from
        n+m↔m+n .to-cong ≡.refl = ≡.refl
        n+m↔m+n .from-cong ≡.refl = ≡.refl
        n+m↔m+n .inverse = (λ { ≡.refl  +-swap.isoˡ _ }) , (λ { ≡.refl  +-swap.isoʳ _ })

open SymmetricMonoidalFunctor
Push,++,[] : SymmetricMonoidalFunctor
Push,++,[] .F = Push
Push,++,[] .isBraidedMonoidal = record
    { isMonoidal = record
        { ε = Push-ε
        ; ⊗-homo = ⊗-homomorphism
        ; associativity = λ { {n} {m} {o} {(X , Y) , Z}  Push-assoc X Y Z }
        ; unitaryˡ = λ { {n} {_ , X}  Push-unitaryˡ X }
        ; unitaryʳ = λ { {n} {X , _}  Push-unitaryʳ X }
        }
    ; braiding-compat = λ { {n} {m} {X , Y}  Push-swap X Y }
    }

module Push,++,[] = SymmetricMonoidalFunctor Push,++,[]