1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
{-# OPTIONS --without-K --safe #-}
open import Level using (Level; 0ℓ; suc)
module Functor.Monoidal.Instance.Nat.System {ℓ : Level} where
open import Function.Construct.Identity using () renaming (function to Id)
import Function.Construct.Constant as Const
open import Category.Monoidal.Instance.Nat using (Nat,+,0; Natop,+,0)
open import Categories.Category.Instance.Nat using (Natop)
open import Category.Instance.Setoids.SymmetricMonoidal {suc ℓ} {ℓ} using (Setoids-×)
open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
open import Data.Circuit.Value using (Value)
open import Data.Setoid using (_⇒ₛ_; ∣_∣)
open import Data.System {ℓ} using (Systemₛ; System; ≤-System)
open import Data.System.Values Value using (Values; _≋_; module ≋)
open import Data.Unit.Polymorphic using (⊤; tt)
open import Data.Vec.Functional using ([])
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_)
open import Functor.Instance.Nat.System {ℓ} using (Sys; map)
open import Function.Base using (_∘_)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Function.Construct.Setoid using (setoid)
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory; BraidedMonoidalCategory)
open Func
module _ where
open System
discrete : System 0
discrete .S = SingletonSetoid
discrete .fₛ = Const.function (Values 0) (SingletonSetoid ⇒ₛ SingletonSetoid) (Id SingletonSetoid)
discrete .fₒ = Const.function SingletonSetoid (Values 0) []
Sys-ε : SingletonSetoid {suc ℓ} {ℓ} ⟶ₛ Systemₛ 0
Sys-ε = Const.function SingletonSetoid (Systemₛ 0) discrete
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
open Cartesian (Setoids-Cartesian {suc ℓ} {ℓ}) using (products)
open import Categories.Category.BinaryProducts using (module BinaryProducts)
open BinaryProducts products using (-×-)
open import Categories.Functor using (_∘F_)
open import Categories.Category.Product using (_⁂_)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Categories.Category.Cocartesian using (Cocartesian)
open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap; +₁∘i₁; +₁∘i₂)
open Dual.op-binaryProducts using () renaming (×-assoc to +-assoc)
open import Data.Product.Base using (_,_; dmap) renaming (map to ×-map)
open import Categories.Functor using (Functor)
open import Categories.Category.Product using (Product)
open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Data.Fin using (_↑ˡ_; _↑ʳ_)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Nat using (ℕ; _+_)
open import Data.Product.Base using (_×_)
private
variable
n m o : ℕ
c₁ c₂ c₃ c₄ c₅ c₆ : Level
ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆ : Level
open import Functor.Monoidal.Instance.Nat.Push using (++ₛ; Push,++,[]; Push-++; Push-assoc)
open import Functor.Monoidal.Instance.Nat.Pull using (splitₛ; Pull,++,[]; ++-assoc; Pull-unitaryˡ; Pull-ε)
open import Functor.Instance.Nat.Pull using (Pull; Pull₁; Pull-resp-≈; Pull-identity)
open import Functor.Instance.Nat.Push using (Push₁; Push-identity)
open import Data.Product.Function.NonDependent.Setoid using (_×-function_; proj₁ₛ; proj₂ₛ; <_,_>ₛ; swapₛ)
_×-⇒_
: {A : Setoid c₁ ℓ₁}
{B : Setoid c₂ ℓ₂}
{C : Setoid c₃ ℓ₃}
{D : Setoid c₄ ℓ₄}
{E : Setoid c₅ ℓ₅}
{F : Setoid c₆ ℓ₆}
→ A ⟶ₛ B ⇒ₛ C
→ D ⟶ₛ E ⇒ₛ F
→ A ×ₛ D ⟶ₛ B ×ₛ E ⇒ₛ C ×ₛ F
_×-⇒_ f g .to (x , y) = to f x ×-function to g y
_×-⇒_ f g .cong (x , y) = cong f x , cong g y
open import Function.Construct.Setoid using (_∙_)
⊗ : System n × System m → System (n + m)
⊗ {n} {m} (S₁ , S₂) = record
{ S = S₁.S ×ₛ S₂.S
; fₛ = S₁.fₛ ×-⇒ S₂.fₛ ∙ splitₛ
; fₒ = ++ₛ ∙ S₁.fₒ ×-function S₂.fₒ
}
where
module S₁ = System S₁
module S₂ = System S₂
open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using () renaming (Setoids-× to 0ℓ-Setoids-×)
module 0ℓ-Setoids-× = SymmetricMonoidalCategory 0ℓ-Setoids-× renaming (braidedMonoidalCategory to B)
open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_)
open import Categories.Functor.Monoidal.Symmetric Natop,+,0 0ℓ-Setoids-× using (module Strong)
open SymmetricMonoidalCategory using () renaming (braidedMonoidalCategory to B)
module Natop,+,0 = SymmetricMonoidalCategory Natop,+,0 renaming (braidedMonoidalCategory to B)
open import Categories.Functor.Monoidal.Braided Natop,+,0.B 0ℓ-Setoids-×.B using () renaming (module Strong to StrongB)
open Strong using (SymmetricMonoidalFunctor)
open StrongB using (BraidedMonoidalFunctor)
opaque
_~_ : {A B : Setoid 0ℓ 0ℓ} → Func A B → Func A B → Set
_~_ = _≈_
infix 4 _~_
sym-~
: {A B : Setoid 0ℓ 0ℓ}
{x y : Func A B}
→ x ~ y
→ y ~ x
sym-~ {A} {B} {x} {y} = 0ℓ-Setoids-×.Equiv.sym {A} {B} {x} {y}
⊗ₛ
: {n m : ℕ}
→ Func (Systemₛ n ×ₛ Systemₛ m) (Systemₛ (n + m))
⊗ₛ .to = ⊗
⊗ₛ {n} {m} .cong {a , b} {c , d} ((a≤c , c≤a) , (b≤d , d≤b)) = left , right
where
module a = System a
module b = System b
module c = System c
module d = System d
open ≤-System
module a≤c = ≤-System a≤c
module b≤d = ≤-System b≤d
module c≤a = ≤-System c≤a
module d≤b = ≤-System d≤b
open Setoid
open System
open import Data.Product.Base using (dmap)
open import Data.Vec.Functional.Properties using (++-cong)
left : ≤-System (⊗ₛ .to (a , b)) (⊗ₛ .to (c , d))
left = record
{ ⇒S = a≤c.⇒S ×-function b≤d.⇒S
; ≗-fₛ = λ i → dmap (a≤c.≗-fₛ (i ∘ i₁)) (b≤d.≗-fₛ (i ∘ i₂))
; ≗-fₒ = λ (s₁ , s₂) → ++-cong (a.fₒ′ s₁) (c.fₒ′ (a≤c.⇒S ⟨$⟩ s₁)) (a≤c.≗-fₒ s₁) (b≤d.≗-fₒ s₂)
}
right : ≤-System (⊗ₛ .to (c , d)) (⊗ₛ .to (a , b))
right = record
{ ⇒S = c≤a.⇒S ×-function d≤b.⇒S
; ≗-fₛ = λ i → dmap (c≤a.≗-fₛ (i ∘ i₁)) (d≤b.≗-fₛ (i ∘ i₂))
; ≗-fₒ = λ (s₁ , s₂) → ++-cong (c.fₒ′ s₁) (a.fₒ′ (c≤a.⇒S ⟨$⟩ s₁)) (c≤a.≗-fₒ s₁) (d≤b.≗-fₒ s₂)
}
open import Data.Fin using (Fin)
System-⊗-≤
: {n n′ m m′ : ℕ}
(X : System n)
(Y : System m)
(f : Fin n → Fin n′)
(g : Fin m → Fin m′)
→ ≤-System (⊗ (map f X , map g Y)) (map (f +₁ g) (⊗ (X , Y)))
System-⊗-≤ {n} {n′} {m} {m′} X Y f g = record
{ ⇒S = Id (X.S ×ₛ Y.S)
; ≗-fₛ = λ i _ → cong X.fₛ (≋.sym (≡.cong i ∘ +₁∘i₁)) , cong Y.fₛ (≋.sym (≡.cong i ∘ +₁∘i₂ {f = f}))
; ≗-fₒ = λ (s₁ , s₂) → Push-++ f g (X.fₒ′ s₁) (Y.fₒ′ s₂)
}
where
module X = System X
module Y = System Y
System-⊗-≥
: {n n′ m m′ : ℕ}
(X : System n)
(Y : System m)
(f : Fin n → Fin n′)
(g : Fin m → Fin m′)
→ ≤-System (map (f +₁ g) (⊗ (X , Y))) (⊗ (map f X , map g Y))
System-⊗-≥ {n} {n′} {m} {m′} X Y f g = record
{ ⇒S = Id (X.S ×ₛ Y.S)
-- ; ≗-fₛ = λ i _ → cong X.fₛ (≡.cong i ∘ +₁∘i₁) , cong Y.fₛ (≡.cong i ∘ +₁∘i₂ {f = f})
; ≗-fₛ = λ i _ → cong (X.fₛ ×-⇒ Y.fₛ) (Pull-resp-≈ (+₁∘i₁ {n′}) {i} , Pull-resp-≈ (+₁∘i₂ {f = f}) {i})
; ≗-fₒ = λ (s₁ , s₂) → ≋.sym (Push-++ f g (X.fₒ′ s₁) (Y.fₒ′ s₂))
}
where
module X = System X
module Y = System Y
import Relation.Binary.PropositionalEquality as ≡
⊗-homomorphism : NaturalTransformation (-×- ∘F (Sys ⁂ Sys)) (Sys ∘F -+-)
⊗-homomorphism = ntHelper record
{ η = λ (n , m) → ⊗ₛ {n} {m}
; commute = λ { (f , g) {X , Y} → System-⊗-≤ X Y f g , System-⊗-≥ X Y f g }
}
⊗-assoc-≤
: (X : System n)
(Y : System m)
(Z : System o)
→ ≤-System (map (+-assocˡ {n}) (⊗ (⊗ (X , Y) , Z))) (⊗ (X , ⊗ (Y , Z)))
⊗-assoc-≤ {n} {m} {o} X Y Z = record
{ ⇒S = ×-assocˡ
; ≗-fₛ = λ i ((s₁ , s₂) , s₃) → cong (X.fₛ ×-⇒ (Y.fₛ ×-⇒ Z.fₛ) ∙ assocˡ) (associativity-inv {x = i}) {s₁ , s₂ , s₃}
; ≗-fₒ = λ ((s₁ , s₂) , s₃) → Push-assoc (X.fₒ′ s₁) (Y.fₒ′ s₂) (Z.fₒ′ s₃)
}
where
open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products)
open BinaryProducts 0ℓ-products using (assocˡ)
open Cartesian (Setoids-Cartesian {ℓ} {ℓ}) using () renaming (products to prod)
open BinaryProducts prod using () renaming (assocˡ to ×-assocˡ)
module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[]
module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal })
open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (associativity-inv)
module X = System X
module Y = System Y
module Z = System Z
⊗-assoc-≥
: (X : System n)
(Y : System m)
(Z : System o)
→ ≤-System (⊗ (X , ⊗ (Y , Z))) (map (+-assocˡ {n}) (⊗ (⊗ (X , Y) , Z)))
⊗-assoc-≥ {n} {m} {o} X Y Z = record
{ ⇒S = ×-assocʳ
; ≗-fₛ = λ i (s₁ , s₂ , s₃) → cong ((X.fₛ ×-⇒ Y.fₛ) ×-⇒ Z.fₛ) (sym-split-assoc {i}) {(s₁ , s₂) , s₃}
; ≗-fₒ = λ (s₁ , s₂ , s₃) → sym-++-assoc {(X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃}
}
where
open Cartesian (Setoids-Cartesian {ℓ} {ℓ}) using () renaming (products to prod)
open BinaryProducts prod using () renaming (assocʳ to ×-assocʳ)
open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products)
open BinaryProducts 0ℓ-products using (×-assoc; assocˡ; assocʳ)
open import Categories.Morphism.Reasoning 0ℓ-Setoids-×.U using (switch-tofromʳ)
open import Categories.Functor.Monoidal.Symmetric using (module Lax)
module Lax₂ = Lax Nat,+,0 0ℓ-Setoids-×
module Pull,++,[] = Strong.SymmetricMonoidalFunctor Pull,++,[]
open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (associativity-inv)
module Push,++,[] = Lax₂.SymmetricMonoidalFunctor Push,++,[]
+-assocℓ : Fin ((n + m) + o) → Fin (n + (m + o))
+-assocℓ = +-assocˡ {n} {m} {o}
opaque
unfolding _~_
associativity-inv-~ : splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull₁ +-assocℓ ~ assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ
associativity-inv-~ {i} = associativity-inv {n} {m} {o} {i}
associativity-~ : Push₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) ~ ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ assocˡ
associativity-~ {i} = Push,++,[].associativity {n} {m} {o} {i}
sym-split-assoc-~ : assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ~ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull₁ +-assocℓ
sym-split-assoc-~ = sym-~ associativity-inv-~
sym-++-assoc-~ : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ assocˡ ~ Push₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o)
sym-++-assoc-~ = sym-~ associativity-~
opaque
unfolding _~_
sym-split-assoc : assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ≈ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull₁ +-assocℓ
sym-split-assoc {i} = sym-split-assoc-~ {i}
sym-++-assoc : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ assocˡ ≈ Push₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o)
sym-++-assoc {i} = sym-++-assoc-~
module X = System X
module Y = System Y
module Z = System Z
open import Function.Base using (id)
Sys-unitaryˡ-≤ : (X : System n) → ≤-System (map id (⊗ (discrete , X))) X
Sys-unitaryˡ-≤ X = record
{ ⇒S = proj₂ₛ
; ≗-fₛ = λ i (_ , s) → X.refl
; ≗-fₒ = λ (_ , s) → Push-identity
}
where
module X = System X
Sys-unitaryˡ-≥ : (X : System n) → ≤-System X (map id (⊗ (discrete , X)))
Sys-unitaryˡ-≥ {n} X = record
{ ⇒S = < Const.function X.S SingletonSetoid tt , Id X.S >ₛ
; ≗-fₛ = λ i s → tt , X.refl
; ≗-fₒ = λ s → Equiv.sym {x = Push₁ id} {Id (Values n)} Push-identity
}
where
module X = System X
open SymmetricMonoidalCategory 0ℓ-Setoids-× using (module Equiv)
open import Data.Vec.Functional using (_++_)
Sys-unitaryʳ-≤ : (X : System n) → ≤-System (map (id ++ (λ ())) (⊗ {n} {0} (X , discrete))) X
Sys-unitaryʳ-≤ {n} X = record
{ ⇒S = proj₁ₛ
; ≗-fₛ = λ i (s , _) → cong (X.fₛ ∙ proj₁ₛ {B = SingletonSetoid {0ℓ}}) (unitaryʳ-inv {n} {i})
; ≗-fₒ = λ (s , _) → Push,++,[].unitaryʳ {n} {X.fₒ′ s , tt}
}
where
module X = System X
module Pull,++,[] = Strong.SymmetricMonoidalFunctor Pull,++,[]
open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (unitaryʳ-inv; module Shorthands)
open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax)
module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[]
Sys-unitaryʳ-≥ : (X : System n) → ≤-System X (map (id ++ (λ ())) (⊗ {n} {0} (X , discrete)))
Sys-unitaryʳ-≥ {n} X = record
{ ⇒S = < Id X.S , Const.function X.S SingletonSetoid tt >ₛ
; ≗-fₛ = λ i s →
cong
(X.fₛ ×-⇒ Const.function (Values 0) (SingletonSetoid ⇒ₛ SingletonSetoid) (Id (SingletonSetoid {ℓ} {ℓ})) ∙ Id (Values n) ×-function ε⇒)
sym-split-unitaryʳ
{s , tt}
; ≗-fₒ = λ s → sym-++-unitaryʳ {X.fₒ′ s , tt}
}
where
module X = System X
module Pull,++,[] = Strong.SymmetricMonoidalFunctor Pull,++,[]
open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (unitaryʳ-inv; module Shorthands)
open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax)
module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[]
import Categories.Category.Monoidal.Utilities 0ℓ-Setoids-×.monoidal as ⊗-Util
open ⊗-Util.Shorthands using (ρ⇐)
open Shorthands using (ε⇐; ε⇒)
sym-split-unitaryʳ
: ρ⇐ ≈ Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull₁ (id ++ (λ ()))
sym-split-unitaryʳ =
0ℓ-Setoids-×.Equiv.sym
{Values n}
{Values n ×ₛ SingletonSetoid}
{Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull₁ (id ++ (λ ()))}
{ρ⇐}
(unitaryʳ-inv {n})
sym-++-unitaryʳ : proj₁ₛ {B = SingletonSetoid {0ℓ} {0ℓ}} ≈ Push₁ (id ++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function ε⇒
sym-++-unitaryʳ =
0ℓ-Setoids-×.Equiv.sym
{Values n ×ₛ SingletonSetoid}
{Values n}
{Push₁ (id ++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function ε⇒}
{proj₁ₛ}
(Push,++,[].unitaryʳ {n})
Sys-braiding-compat-≤
: (X : System n)
(Y : System m)
→ ≤-System (map (+-swap {m} {n}) (⊗ (X , Y))) (⊗ (Y , X))
Sys-braiding-compat-≤ {n} {m} X Y = record
{ ⇒S = swapₛ
; ≗-fₛ = λ i (s₁ , s₂) → cong (Y.fₛ ×-⇒ X.fₛ ∙ swapₛ) (braiding-compat-inv {m} {n} {i}) {s₂ , s₁}
; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].braiding-compat {n} {m} {X.fₒ′ s₁ , Y.fₒ′ s₂}
}
where
module X = System X
module Y = System Y
module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[]
module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal })
open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (braiding-compat-inv)
open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax)
module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[]
Sys-braiding-compat-≥
: (X : System n)
(Y : System m)
→ ≤-System (⊗ (Y , X)) (map (+-swap {m} {n}) (⊗ (X , Y)))
Sys-braiding-compat-≥ {n} {m} X Y = record
{ ⇒S = swapₛ
; ≗-fₛ = λ i (s₂ , s₁) → cong (X.fₛ ×-⇒ Y.fₛ) (sym-braiding-compat-inv {i})
; ≗-fₒ = λ (s₂ , s₁) → sym-braiding-compat-++ {X.fₒ′ s₁ , Y.fₒ′ s₂}
}
where
module X = System X
module Y = System Y
module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[]
module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal })
open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (braiding-compat-inv)
open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax)
module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[]
sym-braiding-compat-inv : swapₛ ∙ splitₛ {m} ≈ splitₛ ∙ Pull₁ (+-swap {m} {n})
sym-braiding-compat-inv {i} =
0ℓ-Setoids-×.Equiv.sym
{Values (m + n)}
{Values n ×ₛ Values m}
{splitₛ ∙ Pull₁ (+-swap {m} {n})}
{swapₛ ∙ splitₛ {m}}
(λ {j} → braiding-compat-inv {m} {n} {j}) {i}
sym-braiding-compat-++ : ++ₛ {m} ∙ swapₛ ≈ Push₁ (+-swap {m} {n}) ∙ ++ₛ
sym-braiding-compat-++ {i} =
0ℓ-Setoids-×.Equiv.sym
{Values n ×ₛ Values m}
{Values (m + n)}
{Push₁ (+-swap {m} {n}) ∙ ++ₛ}
{++ₛ {m} ∙ swapₛ}
(Push,++,[].braiding-compat {n} {m})
open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax)
open Lax.SymmetricMonoidalFunctor
Sys,⊗,ε : Lax.SymmetricMonoidalFunctor
Sys,⊗,ε .F = Sys
Sys,⊗,ε .isBraidedMonoidal = record
{ isMonoidal = record
{ ε = Sys-ε
; ⊗-homo = ⊗-homomorphism
; associativity = λ { {n} {m} {o} {(X , Y), Z} → ⊗-assoc-≤ X Y Z , ⊗-assoc-≥ X Y Z }
; unitaryˡ = λ { {n} {_ , X} → Sys-unitaryˡ-≤ X , Sys-unitaryˡ-≥ X }
; unitaryʳ = λ { {n} {X , _} → Sys-unitaryʳ-≤ X , Sys-unitaryʳ-≥ X }
}
; braiding-compat = λ { {n} {m} {X , Y} → Sys-braiding-compat-≤ X Y , Sys-braiding-compat-≥ X Y }
}
|