1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
{-# OPTIONS --without-K --safe #-}
open import Data.Nat using (ℕ)
open import Level using (Level; suc; 0ℓ)
module Data.System.Monoidal {ℓ : Level} (n : ℕ) where
open import Data.System {ℓ} using (System; Systems; _≤_; ≤-refl; ≤-trans; _≈_; discrete)
open import Categories.Category.Monoidal using (Monoidal)
open import Categories.Category.Monoidal.Symmetric using (Symmetric)
open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
open import Categories.Functor using (Functor)
open import Categories.Functor.Bifunctor using (Bifunctor; flip-bifunctor)
open import Categories.Morphism (Systems n) using (_≅_; Iso)
open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper)
open import Data.Circuit.Value using (Monoid)
open import Data.Product using (_,_; _×_; uncurry′)
open import Data.Product.Function.NonDependent.Setoid using (_×-function_; proj₁ₛ; proj₂ₛ; swapₛ)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Setoid using (_⇒ₛ_; _×-⇒_; assocₛ⇒; assocₛ⇐)
open import Data.System.Values Monoid using (Values; _⊕_; ⊕-cong; ⊕-identityˡ; ⊕-identityʳ; ⊕-assoc; ⊕-comm; module ≋)
open import Function using (Func; _⟶ₛ_)
open import Function.Construct.Setoid using (_∙_)
open import Relation.Binary using (Setoid)
open _≤_
open Setoid
module _ where
open Func
δₛ : Values n ⟶ₛ Values n ×ₛ Values n
δₛ .to v = v , v
δₛ .cong v≋w = v≋w , v≋w
⊕ₛ : Values n ×ₛ Values n ⟶ₛ Values n
⊕ₛ .to (v , w) = v ⊕ w
⊕ₛ .cong (v₁≋v₂ , w₁≋w₂) = ⊕-cong v₁≋v₂ w₁≋w₂
_⊗₀_ : System n → System n → System n
_⊗₀_ X Y = let open System in record
{ S = S X ×ₛ S Y
; fₛ = fₛ X ×-⇒ fₛ Y ∙ δₛ
; fₒ = ⊕ₛ ∙ fₒ X ×-function fₒ Y
}
_⊗₁_
: {A A′ B B′ : System n}
(f : A ≤ A′)
(g : B ≤ B′)
→ A ⊗₀ B ≤ A′ ⊗₀ B′
_⊗₁_ f g .⇒S = ⇒S f ×-function ⇒S g
_⊗₁_ f g .≗-fₛ i (s₁ , s₂) = ≗-fₛ f i s₁ , ≗-fₛ g i s₂
_⊗₁_ f g .≗-fₒ (s₁ , s₂) = ⊕-cong (≗-fₒ f s₁) (≗-fₒ g s₂)
module _ where
open Functor
open System
⊗ : Bifunctor (Systems n) (Systems n) (Systems n)
⊗ .F₀ = uncurry′ _⊗₀_
⊗ .F₁ = uncurry′ _⊗₁_
⊗ .identity {X , Y} = refl (S X) , refl (S Y)
⊗ .homomorphism {_} {_} {X″ , Y″} = refl (S X″) , refl (S Y″)
⊗ .F-resp-≈ (f≈f′ , g≈g′) = f≈f′ , g≈g′
module Unitors {X : System n} where
open System X
⊗-discreteˡ-≤ : discrete n ⊗₀ X ≤ X
⊗-discreteˡ-≤ .⇒S = proj₂ₛ
⊗-discreteˡ-≤ .≗-fₛ i s = S.refl
⊗-discreteˡ-≤ .≗-fₒ (_ , s) = ⊕-identityˡ (fₒ′ s)
⊗-discreteˡ-≥ : X ≤ discrete n ⊗₀ X
⊗-discreteˡ-≥ .⇒S = record { to = λ s → _ , s ; cong = λ s≈s′ → _ , s≈s′ }
⊗-discreteˡ-≥ .≗-fₛ i s = _ , S.refl
⊗-discreteˡ-≥ .≗-fₒ s = ≋.sym (⊕-identityˡ (fₒ′ s))
⊗-discreteʳ-≤ : X ⊗₀ discrete n ≤ X
⊗-discreteʳ-≤ .⇒S = proj₁ₛ
⊗-discreteʳ-≤ .≗-fₛ i s = S.refl
⊗-discreteʳ-≤ .≗-fₒ (s , _) = ⊕-identityʳ (fₒ′ s)
⊗-discreteʳ-≥ : X ≤ X ⊗₀ discrete n
⊗-discreteʳ-≥ .⇒S = record { to = λ s → s , _ ; cong = λ s≈s′ → s≈s′ , _ }
⊗-discreteʳ-≥ .≗-fₛ i s = S.refl , _
⊗-discreteʳ-≥ .≗-fₒ s = ≋.sym (⊕-identityʳ (fₒ′ s))
open _≅_
open Iso
unitorˡ : discrete n ⊗₀ X ≅ X
unitorˡ .from = ⊗-discreteˡ-≤
unitorˡ .to = ⊗-discreteˡ-≥
unitorˡ .iso .isoˡ = _ , S.refl
unitorˡ .iso .isoʳ = S.refl
unitorʳ : X ⊗₀ discrete n ≅ X
unitorʳ .from = ⊗-discreteʳ-≤
unitorʳ .to = ⊗-discreteʳ-≥
unitorʳ .iso .isoˡ = S.refl , _
unitorʳ .iso .isoʳ = S.refl
open Unitors using (unitorˡ; unitorʳ) public
module Associator {X Y Z : System n} where
module X = System X
module Y = System Y
module Z = System Z
assoc-≤ : (X ⊗₀ Y) ⊗₀ Z ≤ X ⊗₀ (Y ⊗₀ Z)
assoc-≤ .⇒S = assocₛ⇒
assoc-≤ .≗-fₛ i ((s₁ , s₂) , s₃) = X.S.refl , Y.S.refl , Z.S.refl
assoc-≤ .≗-fₒ ((s₁ , s₂) , s₃) = ⊕-assoc (X.fₒ′ s₁) (Y.fₒ′ s₂) (Z.fₒ′ s₃)
assoc-≥ : X ⊗₀ (Y ⊗₀ Z) ≤ (X ⊗₀ Y) ⊗₀ Z
assoc-≥ .⇒S = assocₛ⇐
assoc-≥ .≗-fₛ i (s₁ , (s₂ , s₃)) = (X.S.refl , Y.S.refl) , Z.S.refl
assoc-≥ .≗-fₒ (s₁ , (s₂ , s₃)) = ≋.sym (⊕-assoc (X.fₒ′ s₁) (Y.fₒ′ s₂) (Z.fₒ′ s₃) )
open _≅_
open Iso
associator : (X ⊗₀ Y) ⊗₀ Z ≅ X ⊗₀ (Y ⊗₀ Z)
associator .from = assoc-≤
associator .to = assoc-≥
associator .iso .isoˡ = (X.S.refl , Y.S.refl) , Z.S.refl
associator .iso .isoʳ = X.S.refl , Y.S.refl , Z.S.refl
open Associator using (associator) public
Systems-Monoidal : Monoidal (Systems n)
Systems-Monoidal = let open System in record
{ ⊗ = ⊗
; unit = discrete n
; unitorˡ = unitorˡ
; unitorʳ = unitorʳ
; associator = associator
; unitorˡ-commute-from = λ {_} {Y} → refl (S Y)
; unitorˡ-commute-to = λ {_} {Y} → _ , refl (S Y)
; unitorʳ-commute-from = λ {_} {Y} → refl (S Y)
; unitorʳ-commute-to = λ {_} {Y} → refl (S Y) , _
; assoc-commute-from = λ {_} {X′} {_} {_} {Y′} {_} {_} {Z′} → refl (S X′) , refl (S Y′) , refl (S Z′)
; assoc-commute-to = λ {_} {X′} {_} {_} {Y′} {_} {_} {Z′} → (refl (S X′) , refl (S Y′)) , refl (S Z′)
; triangle = λ {X} {Y} → refl (S X) , refl (S Y)
; pentagon = λ {W} {X} {Y} {Z} → refl (S W) , refl (S X) , refl (S Y) , refl (S Z)
}
open System
⊗-swap-≤ : {X Y : System n} → Y ⊗₀ X ≤ X ⊗₀ Y
⊗-swap-≤ .⇒S = swapₛ
⊗-swap-≤ {X} {Y} .≗-fₛ i (s₁ , s₂) = refl (S X) , refl (S Y)
⊗-swap-≤ {X} {Y} .≗-fₒ (s₁ , s₂) = ⊕-comm (fₒ′ Y s₁) (fₒ′ X s₂)
braiding : ⊗ ≃ flip-bifunctor ⊗
braiding = niHelper record
{ η = λ (X , Y) → ⊗-swap-≤
; η⁻¹ = λ (X , Y) → ⊗-swap-≤
; commute = λ { {X , Y} {X′ , Y′} (f , g) → refl (S Y′) , refl (S X′) }
; iso = λ (X , Y) → record
{ isoˡ = refl (S X) , refl (S Y)
; isoʳ = refl (S Y) , refl (S X)
}
}
Systems-Symmetric : Symmetric Systems-Monoidal
Systems-Symmetric = record
{ braided = record
{ braiding = braiding
; hexagon₁ = λ {X} {Y} {Z} → refl (S Y) , refl (S Z) , refl (S X)
; hexagon₂ = λ {X} {Y} {Z} → (refl (S Z) , refl (S X)) , refl (S Y)
}
; commutative = λ {X} {Y} → refl (S Y) , refl (S X)
}
Systems-MC : MonoidalCategory (suc 0ℓ) ℓ 0ℓ
Systems-MC = record { monoidal = Systems-Monoidal }
Systems-SMC : SymmetricMonoidalCategory (suc 0ℓ) ℓ 0ℓ
Systems-SMC = record { symmetric = Systems-Symmetric }
|