blob: e86e942bfd39f0aafaaed2e1d9d5acf221be4441 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
{-# OPTIONS --without-K --safe #-}
module NaturalTransformation.Instance.GateSemantics where
open import Level using (suc; 0ℓ)
open import Category.Instance.Setoids.SymmetricMonoidal {suc 0ℓ} {suc 0ℓ} using (Setoids-×)
import Data.Fin.Properties as FinProp
import Data.Circuit.Value as Value
import Functor.Forgetful.Instance.CMonoid Setoids-×.symmetric as CMonoid
import Functor.Forgetful.Instance.Monoid Setoids-×.monoidal as Monoid
open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor) renaming (_∘F_ to _∙_)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Category.Construction.CMonoids Setoids-×.symmetric using (CMonoids)
open import Data.Circuit {suc 0ℓ} using () renaming (module Edge to EGate)
open import Data.Circuit.Gate using (Gate; Gates)
open import Data.Fin using (Fin; #_)
open import Data.Fin.Patterns using (0F; 1F; 2F)
open import Data.Nat using (ℕ)
open import Data.Setoid using (∣_∣; _⇒ₛ_)
open import Data.Setoid.Unit using (⊤ₛ)
open import Data.System {suc 0ℓ} using (System)
open import Data.System.Values Value.Monoid using (Values)
open import Function using (Func; _⟶ₛ_; id; _⟨$⟩_)
open import Function.Construct.Constant using () renaming (function to Const)
open import Function.Construct.Identity using () renaming (function to Id)
open import Functor.Instance.Nat.Edge {suc 0ℓ} Gates using (Edge)
open import Functor.Instance.Nat.System using (module NatCMon)
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open Value using (Value)
open NatCMon using (Sys)
open System
open Func
Valueₛ : Setoid 0ℓ 0ℓ
Valueₛ = ≡.setoid Value
opaque
unfolding Values
1-cell : Value → System 1
1-cell x .S = ⊤ₛ
1-cell x .fₛ = Const (Values 1) (⊤ₛ ⇒ₛ ⊤ₛ) (Id ⊤ₛ)
1-cell x .fₒ = Const ⊤ₛ (Values 1) λ { 0F → x }
2-cell : (Value → Value) → System 2
2-cell f .S = Valueₛ
2-cell f .fₛ .to x = Const Valueₛ Valueₛ (f (x (# 0)))
2-cell f .fₛ .cong x = ≡.cong f (x (# 0))
2-cell f .fₒ .to x 0F = Value.U
2-cell f .fₒ .to x 1F = x
2-cell f .fₒ .cong _ 0F = ≡.refl
2-cell f .fₒ .cong x 1F = x
3-cell : (Value → Value → Value) → System 3
3-cell f .S = Valueₛ
3-cell f .fₛ .to i = Const Valueₛ Valueₛ (f (i (# 0)) (i (# 1)))
3-cell f .fₛ .cong ≡i = ≡.cong₂ f (≡i (# 0)) (≡i (# 1))
3-cell f .fₒ .to _ 0F = Value.U
3-cell f .fₒ .to _ 1F = Value.U
3-cell f .fₒ .to x 2F = x
3-cell f .fₒ .cong _ 0F = ≡.refl
3-cell f .fₒ .cong _ 1F = ≡.refl
3-cell f .fₒ .cong x 2F = x
-- Belnap's four-valued logic
module Belnap where
open Value.Value
true false : Value
true = T
false = F
not : Value → Value
not U = U
not T = F
not F = T
not X = X
and : Value → Value → Value
and U U = U
and U T = U
and U F = F
and U X = F
and T y = y
and F _ = F
and X U = F
and X T = X
and X F = F
and X X = X
or : Value → Value → Value
or U U = U
or U T = T
or U F = U
or U X = T
or T _ = T
or F y = y
or X U = T
or X T = T
or X F = X
or X X = X
xor : Value → Value → Value
xor x y = or (and x (not y)) (and (not x) y)
nand : Value → Value → Value
nand x y = not (and x y)
nor : Value → Value → Value
nor x y = not (or x y)
xnor : Value → Value → Value
xnor x y = not (xor x y)
module _ where
open Belnap
open Gate
system-of-gate : {n : ℕ} → Gate n → System n
system-of-gate ZERO = 1-cell true
system-of-gate ONE = 1-cell false
system-of-gate ID = 2-cell id
system-of-gate NOT = 2-cell not
system-of-gate AND = 3-cell and
system-of-gate OR = 3-cell or
system-of-gate XOR = 3-cell xor
system-of-gate NAND = 3-cell nand
system-of-gate NOR = 3-cell nor
system-of-gate XNOR = 3-cell xnor
private
U : Functor CMonoids (Setoids (suc 0ℓ) (suc 0ℓ))
U = Monoid.Forget ∙ CMonoid.Forget
module U = Functor U
module Edge = Functor Edge
open EGate hiding (Edge)
system-of-edge : {n : ℕ} → ∣ Edge.₀ n ∣ → System n
system-of-edge (mkEdge gate ports) = U.₁ (Sys.₁ ports) ⟨$⟩ system-of-gate gate
system-of-edgeₛ : (n : ℕ) → Edge.₀ n ⟶ₛ U.₀ (Sys.₀ n)
system-of-edgeₛ n .to = system-of-edge {n}
system-of-edgeₛ n .cong {mkEdge label₁ ports₁} {mkEdge label₂ ports₂} (mk≈ ≡.refl ≡.refl ≡ports)
rewrite EGate.HL.cast-is-id ≡.refl label₁ = Sys.F-resp-≈ ≗ports {system-of-gate label₁}
where
≗ports : (x : Fin _) → ports₁ x ≡ ports₂ x
≗ports x = ≡.trans (≡ports x) (≡.cong ports₂ (FinProp.cast-is-id ≡.refl x))
semantics : NaturalTransformation Edge (U ∙ Sys)
semantics = ntHelper record
{ η = system-of-edgeₛ
; commute = λ _ → Sys.homomorphism
}
|