aboutsummaryrefslogtreecommitdiff
path: root/chap2/part4.rkt
blob: b7c60286fd8275da3a10e820224f5dd960e9c8af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#lang sicp
(#%require (only racket/base print-as-expression print-mpair-curly-braces))
(print-as-expression #f)
(print-mpair-curly-braces #f)

;; Chapter 2
;; Building Abstractions with Data

;; 2.4
;; Multiple Representations for Abstract Data

(define (square x) (* x x))

;; Tagged data

(define (attach-tag type-tag contents)
  (cons type-tag contents))

(define (type-tag datum)
  (if (pair? datum)
    (car datum)
    (error "Bad tagged datum -- TYPE-TAG" datum)))

(define (contents datum)
  (if (pair? datum)
    (cdr datum)
    (error "Bad tagged datum -- CONTENTS" datum)))

;; Complex number representations

(define (rectangular? z)
  (eq? (type-tag z) 'rectangular))

(define (polar? z)
  (eq? (type-tag z) 'polar))

;; Ben's representation

(define (real-part-rectangular z) (car z))

(define (imag-part-rectangular z) (cdr z))

(define (magnitude-rectangular z)
  (sqrt
    (+
      (square (real-part-rectangular z))
      (square (imag-part-rectangular z)))))

(define (angle-rectangular z)
  (atan
    (imag-part-rectangular z)
    (real-part-rectangular z)))

(define (make-from-real-imag-rectangular x y)
  (attach-tag 'rectangular (cons x y)))

(define (make-from-mag-ang-rectangular r a)
  (attach-tag
    'rectangular
    (cons (* r (cos a)) (* r (sin a)))))

;; Alyssa's representation

(define (real-part-polar z)
  (* (magnitude-polar z) (cos (angle-polar z))))

(define (imag-part-polar z)
  (* (magnitude-polar z) (sin (angle-polar z))))

(define (magnitude-polar z) (car z))

(define (angle-polar z) (cdr z))

(define (make-from-real-imag-polar x y)
  (attach-tag
    'polar
    (cons
      (sqrt (+ (square x) (square y)))
      (atan y x))))

(define (make-from-mag-ang-polar r a)
  (attach-tag 'polar (cons r a)))

;; Generic selectors

(#%provide real-part-)
(define (real-part- z)
  (cond
    ((rectangular? z)
     (real-part-rectangular (contents z)))
    ((polar? z)
     (real-part-polar (contents z)))
    (else (error "Unknown type -- REAL-PART" z))))

(#%provide imag-part-)
(define (imag-part- z)
  (cond
    ((rectangular? z)
     (imag-part-rectangular (contents z)))
    ((polar? z)
     (imag-part-polar (contents z)))
    (else (error "Unknown type -- IMAG-PART" z))))

(#%provide magnitude-)
(define (magnitude- z)
  (cond
    ((rectangular? z)
     (magnitude-rectangular (contents z)))
    ((polar? z)
     (magnitude-polar (contents z)))
    (else (error "Unknown type -- MAGNITUDE" z))))

(#%provide angle-)
(define (angle- z)
  (cond
    ((rectangular? z)
     (angle-rectangular (contents z)))
    ((polar? z)
     (angle-polar (contents z)))
    (else (error "Unknown type -- ANGLE" z))))

;; Constructors

(#%provide make-from-real-imag-)
(define (make-from-real-imag- x y)
  (make-from-real-imag-rectangular x y))

(#%provide make-from-mag-ang-)
(define (make-from-mag-ang- r a)
  (make-from-mag-ang-polar r a))

;; Complex number arithmetic operations

(#%provide add-complex-)
(define (add-complex- z1 z2)
  (make-from-real-imag-
    (+ (real-part- z1) (real-part- z2))
    (+ (imag-part- z1) (imag-part- z2))))

(#%provide sub-complex)
(define (sub-complex z1 z2)
  (make-from-real-imag-
    (- (real-part- z1) (real-part- z2))
    (- (imag-part- z1) (imag-part- z2))))

(#%provide mul-complex-)
(define (mul-complex- z1 z2)
  (make-from-mag-ang-
    (* (magnitude- z1) (magnitude- z2))
    (+ (angle- z1) (angle- z2))))

(#%provide div-complex-)
(define (div-complex- z1 z2)
  (make-from-mag-ang-
    (/ (magnitude- z1) (magnitude- z2))
    (- (angle- z1) (angle- z2))))

(define (get) (error "get not implemented"))
(define (put) (error "put not implemented"))

;; Ben's rectangular package
(define (install-rectangular-package)
  ;; internal procedures
  (define (real-part z) (car z))
  (define (imag-part z) (cdr z))
  (define (make-from-real-imag x y) (cons x y))
  (define (magnitude z)
    (sqrt
      (+
        (square (real-part z))
        (square (imag-part z)))))
  (define (angle z)
    (atan (imag-part z) (real-part z)))
  (define (make-from-mag-ang r a)
    (cons (* r (cos a)) (* r (sin a))))
  ;; interface to rest of system
  (define (tag x) (attach-tag 'rectangular x))
  (put 'real-part '(rectangular) real-part)
  (put 'imag-part '(rectangular) imag-part)
  (put 'magnitude '(rectangular) magnitude)
  (put 'angle '(rectangular) angle)
  (put 'make-from-real-imag 'rectangular
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'rectangular
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

;; Alyssa's polar package
(define (install-polar-package)
  ;; internal procedures
  (define (magnitude z) (car z))
  (define (angle z) (cdr z))
  (define (make-from-mag-ang r a) (cons r a))
  (define (real-part z)
    (* (magnitude z) (cos (angle z))))
  (define (imag-part z)
    (* (magnitude z) (sin (angle z))))
  (define (make-from-real-imag x y)
    (cons
      (sqrt (+ (square x) (square y)))
      (atan y x)))
  ;; interface to rest of system
  (define (tag x) (attach-tag 'polar x))
  (put 'real-part '(polar) real-part)
  (put 'imag-part '(polar) imag-part)
  (put 'magnitude '(polar) magnitude)
  (put 'angle '(poar) angle)
  (put 'make-from-real-imag 'polar
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'polar
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

(define (apply-generic op . args)
  (let ((type-tags (map type-tag args)))
    (let ((proc (get op type-tags)))
      (if proc
        (apply proc (map contents args)) 
        (error
          "No method for these types -- APPLY-GENERIC"
          (list op type-tags))))))

(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'magnitude z))
(define (angle z) (apply-generic 'angle z))

(define (make-from-real-imag x y)
  ((get 'make-from-real-imag 'rectangular) x y))

(define (make-from-mag-ang r a)
  ((get 'make-from-mag-ang 'polar) r a))

#| 2.73 |#

(define (deriv exp var)
  (cond
    ((number? exp) 0)
    ((variable? exp) (if (same-variable? exp var) 1 0))
    (else ((get 'deriv (operator exp)) (operands exp) var))))

(define (operator exp) (car exp))

(define (operands exp) (cdr exp))

(define (variable? x) (symbol? x))

(define (same-variable? v1 v2)
  (and (variable? v1) (variable? v2) (eq? v1 v2)))

(define (=number? exp num)
  (and (number? exp) (= exp num)))

(define (make-sum a1 a2)
  (cond
    ((=number? a1 0) a2)
    ((=number? a2 0) a1)
    ((and (number? a1) (number? a2))
     (+ a1 a2))
    (else (list '+ a1 a2))))

(define (make-product m1 m2)
  (cond
    ((or (=number? m1 0) (=number? m2 0))
     0)
    ((=number? m1 1) m2)
    ((=number? m2 1) m1)
    ((and (number? m1) (number? m2))
     (* m1 m2))
    (else (list '* m1 m2))))

(define (make-exponentiation u n)
  (cond
    ((not (number? n)) (error "exponent must be a number"))
    ((=number? n 0) 1)
    ((=number? n 1) u)
    (else (list '** u n))))

(define (install-sum-package)
  ;; internal procedures
  (define (deriv-sum operands var)
    (make-sum
      (deriv (car operands) var)
      (deriv (cadr operands) var)))
  ;; interface to rest of system
  (put 'deriv '(+) deriv-sum)
  'done)

(define (install-product-package)
  ;; internal procedures
  (define (deriv-product operands var)
    (make-sum
      (make-product
        (car operands)
        (deriv (cadr operands) var))
      (make-product
        (deriv (car operands) var)
        (cadr operands))))
  ;; interface to rest of system
  (put 'deriv '(*) deriv-product)
  'done)

(define (install-exponentiation-package)
  ;; internal procedures
  (define (deriv-expo operands var)
    (make-product
      (make-product
        (cadr exp)
        (make-exponentiation
          (car exp)
           (- (cadr exp) 1)))
       (deriv (car exp) var)))
  ;; interface to rest of system
  (put 'deriv '(^^) deriv-expo)
  'done)

(#%provide make-from-real-imag--)
(define (make-from-real-imag-- x y)
  (define (dispatch op)
    (cond
      ((eq? op 'real-part) x)
      ((eq? op 'imag-part) y)
      ((eq? op 'magnitude))
      ((eq? op 'magnitude)
       (sqrt (+ (square x) (square y))))
      ((eq? op 'angle) (atan y x))
      (else (error "Unknown op -- MAKE-FROM-REAL-IMAG" op))))
  dispatch)

(#%provide apply-generic-)
(define (apply-generic- op arg) (arg op))

#| 2.75 |#

(#%provide make-from-mag-ang--)
(define (make-from-mag-ang-- r a)
  (define (dispatch op)
    (cond
      ((eq? op 'real-part) (* r (cos a)))
      ((eq? op 'imag-part) (* r (sin a)))
      ((eq? op 'magnitude) r)
      ((eq? op 'angle) a)
      (else (error "Unknown op -- MAKE-FROM-MAG-ANG" op))))
  dispatch)

#| 2.76 |#

;; Message passing is ideal if new types must often be added.
;; Generic operations with explict dispatch is best if new
;; operations must often be added.