blob: 04b41452393c327a38caaf6e02c62b33aa896511 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
#lang sicp
(#%require (only racket/base print-as-expression print-mpair-curly-braces))
(print-as-expression #f)
(print-mpair-curly-braces #f)
;; Chapter 4
;; Metalinguistic Abstraction
;; 4.3
;; Variations on a Scheme -- Nondeterministic Computing
;; Amb and Search
#| (define (prime-sum-pair list1 list2) |#
#| (let |#
#| ((a (an-element-of list1)) |#
#| (b (an-element-of list2))) |#
#| (require (prime? (+ a b))) |#
#| (list a b))) |#
#| (define (require p) |#
#| (if (not p) (amb))) |#
#| (define (an-element-of items) |#
#| (require (not (null? items))) |#
#| (amb (car items) (an-element-of (cdr items)))) |#
#| (define (an-integer-starting-from n) |#
#| (amb n (an-integer-starting-from (+ n 1)))) |#
#| 4.35 |#
#| (define (an-integer-between low high) |#
#| (require (<= low high)) |#
#| (amb low (an-integer-between (+ low 1) high)) |#
#| (define (a-pythagorean-triple-between low high) |#
#| (let ((i (an-integer-between low high))) |#
#| (let ((j (an-integer-between i high))) |#
#| (let ((k (an-integer-between j high))) |#
#| (require (= (+ (* i i) (* j j)) (* k k))) |#
#| (list i j k))))) |#
#| 4.36 |#
#| (define (a-pythagorean-triple-bad) |#
#| (let ((i (an-integer-starting-from 1))) |#
#| (let ((j (an-integer-starting-from i))) |#
#| (let ((k (an-integer-starting-from j))) |#
#| (require (= (+ (* i i) (* j j)) (* k k))) |#
#| (list i j k))))) |#
;; there is not a valid k for every value of i j
;; the procedure would get stuck trying new values
;; of k forever
#| (define (a-pythagorean-triple) |#
#| (let ((i (an-integer-starting-from 1))) |#
#| (let ((j (an-integer-starting-from i))) |#
#| (let ((k (an-integer-between j (+ i j)))) |#
#| (require (= (+ (* i i) (* j j)) (* k k))) |#
#| (list i j k))))) |#
#| 4.37 |#
#| (define (a-pythagorean-triple-between low high) |#
#| (let |#
#| ((i (an-integer-between low high)) |#
#| (hsq (* high high))) |#
#| (let ((j (an-integer-between i high))) |#
#| (let ((ksq (+ (* i i) (* j j)))) |#
#| (require (>= hsq ksq)) |#
#| (let ((k (sqrt ksq))) |#
#| (require (integer? k)) |#
#| (list i j k)))))) |#
;; this version explores fewer possibilities
;; Examples of Nondeterministic Programs
(define (distinct? items)
(cond
((null? items) true)
((null? (cdr items) true))
((member (car items) (cdr items)) false)
(else (distinct? (cdr items)))))
#| (define (multiple-dwelling) |#
#| (let |#
#| ((baker (amb 1 2 3 4 5)) |#
#| (cooper (amb 1 2 3 4 5)) |#
#| (fletcher (amb 1 2 3 4 5)) |#
#| (miller (amb 1 2 3 4 5)) |#
#| (smith (amb 1 2 3 4 5))) |#
#| (require |#
#| (distinct? (list baker cooper fletcher miller smith))) |#
#| (require (not (= baker 5))) |#
#| (require (not (= cooper 1))) |#
#| (require (not (= fletcher 5))) |#
#| (require (not (= fletcher 1))) |#
#| (require (< miller cooper)) |#
#| (require (not (= (abs (- smith fletcher)) 1))) |#
#| (require (not (= (abs (- fletcher cooper)) 1))) |#
#| (list |#
#| (list 'baker baker) |#
#| (list 'cooper cooper) |#
#| (list 'fletcher fletcher) |#
#| (list 'miller miller) |#
#| (list 'smith smith)))) |#
#| 4.38 |#
#| (define (multiple-dwelling-mod) |#
#| (let |#
#| ((baker (amb 1 2 3 4 5)) |#
#| (cooper (amb 1 2 3 4 5)) |#
#| (fletcher (amb 1 2 3 4 5)) |#
#| (miller (amb 1 2 3 4 5)) |#
#| (smith (amb 1 2 3 4 5))) |#
#| (require |#
#| (distinct? (list baker cooper fletcher miller smith))) |#
#| (require (not (= baker 5))) |#
#| (require (not (= cooper 1))) |#
#| (require (not (= fletcher 5))) |#
#| (require (not (= fletcher 1))) |#
#| (require (< miller cooper)) |#
#| (require (not (= (abs (- fletcher cooper)) 1))) |#
#| (list |#
#| (list 'baker baker) |#
#| (list 'cooper cooper) |#
#| (list 'fletcher fletcher) |#
#| (list 'miller miller) |#
#| (list 'smith smith)))) |#
#| 4.39 |#
#| (define (multiple-dwelling-reorder) |#
#| (let |#
#| ((baker (amb 1 2 3 4 5)) |#
#| (cooper (amb 1 2 3 4 5)) |#
#| (fletcher (amb 1 2 3 4 5)) |#
#| (miller (amb 1 2 3 4 5)) |#
#| (smith (amb 1 2 3 4 5))) |#
#| (require (< miller cooper)) |#
#| (require (not (= (abs (- smith fletcher)) 1))) |#
#| (require (not (= (abs (- fletcher cooper)) 1))) |#
#| (require |#
#| (distinct? (list baker cooper fletcher miller smith))) |#
#| (require (not (= baker 5))) |#
#| (require (not (= cooper 1))) |#
#| (require (not (= fletcher 5))) |#
#| (require (not (= fletcher 1))) |#
#| (list |#
#| (list 'baker baker) |#
#| (list 'cooper cooper) |#
#| (list 'fletcher fletcher) |#
#| (list 'miller miller) |#
#| (list 'smith smith)))) |#
#| 4.40 |#
#| (define (multiple-dwelling-quick) |#
#| (let |#
#| ((baker (amb 1 2 3 4 5))) |#
#| (require (not (= baker 5))) |#
#| (let ((cooper (amb 1 2 3 4 5))) |#
#| (require (not (= cooper 1))) |#
#| (require (not (= cooper baker))) |#
#| (let ((fletcher (amb 1 2 3 4 5))) |#
#| (require (not (= (abs (- fletcher cooper)) 1))) |#
#| (require (not (= fletcher 1))) |#
#| (require (not (= fletcher 5))) |#
#| (require (not (= fletcher baker))) |#
#| (require (not (= fletcher cooper))) |#
#| (let ((miller (amb 1 2 3 4 5))) |#
#| (require (< miller cooper)) |#
#| (require (not (= miller baker))) |#
#| (require (not (= miller cooper))) |#
#| (require (not (= miller fletcher))) |#
#| (let ((smith (amb 1 2 3 4 5))) |#
#| (require (not (= (abs (- smith fletcher)) 1))) |#
#| (require (not (= smith baker))) |#
#| (require (not (= smith cooper))) |#
#| (require (not (= smith fletcher))) |#
#| (require (not (= smith miller))) |#
#| (list |#
#| (list 'baker baker) |#
#| (list 'cooper cooper) |#
#| (list 'fletcher fletcher) |#
#| (list 'miller miller) |#
#| (list 'smith smith)))))))) |#
#| 4.41 |#
(define (with-next value prev proc)
(if (null? value)
(prev)
(proc (car value) (cdr value))))
(define (require test this next)
(lambda (x value)
(if (not (test x))
(this value)
(next x value))))
(#%provide multiple-dwelling-scheme)
(define (multiple-dwelling-scheme)
(define (fail) (error "No solution"))
(define (bakerfunc bakers)
(with-next bakers fail
(require (lambda (b) (not (= b 5))) bakerfunc
(lambda (baker bakers)
(define (cooperfunc coopers)
(with-next coopers (lambda () bakerfunc bakers)
(require (lambda (c) (not (= c 1))) cooperfunc
(require (lambda (c) (not (= c baker))) cooperfunc
(lambda (cooper coopers)
(define (fletcherfunc fletchers)
(with-next fletchers (lambda () (cooperfunc coopers))
(require (lambda (f) (not (= (abs (- f cooper)) 1))) fletcherfunc
(require (lambda (f) (not (= f 1))) fletcherfunc
(require (lambda (f) (not (= f 5))) fletcherfunc
(require (lambda (f) (not (= f baker))) fletcherfunc
(require (lambda (f) (not (= f cooper))) fletcherfunc
(lambda (fletcher fletchers)
(define (millerfunc millers)
(with-next millers (lambda () (fletcherfunc fletchers))
(require (lambda (m) (< m cooper)) millerfunc
(require (lambda (m) (not (= m baker))) millerfunc
(require (lambda (m) (not (= m cooper))) millerfunc
(require (lambda (m) (not (= m fletcher))) millerfunc
(lambda (miller millers)
(define (smithfunc smiths)
(with-next smiths (lambda () (millerfunc millers))
(require (lambda (s) (not (= (abs (- s fletcher)) 1))) smithfunc
(require (lambda (s) (not (= s baker))) smithfunc
(require (lambda (s) (not (= s cooper))) smithfunc
(require (lambda (s) (not (= s fletcher))) smithfunc
(require (lambda (s) (not (= s miller))) smithfunc
(lambda (smith smiths)
(list
(list 'baker baker bakers)
(list 'cooper cooper coopers)
(list 'fletcher fletcher fletchers)
(list 'miller miller millers)
(list 'smith smith smiths))))))))))
(smithfunc (list 1 2 3 4 5)))))))))
(millerfunc (list 1 2 3 4 5))))))))))
(fletcherfunc (list 1 2 3 4 5)))))))
(cooperfunc (list 1 2 3 4 5))))))
(bakerfunc (list 1 2 3 4 5)))
#| 4.42 |#
#| 4.43 |#
#| 4.44 |#
#| 4.45 |#
#| 4.46 |#
#| 4.47 |#
#| 4.48 |#
#| 4.49 |#
;; Implementing the Amb Evaluator
#| 4.50 |#
#| 4.51 |#
#| 4.52 |#
#| 4.53 |#
#| 4.54 |#
|