aboutsummaryrefslogtreecommitdiff
path: root/chap5/part1.rkt
blob: 3bd5009d9afc2a9cc0dcb04f44b8c97cac5bcd37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#lang sicp
(#%require (only racket/base print-as-expression print-mpair-curly-braces))
(print-as-expression #f)
(print-mpair-curly-braces #f)

;; Chapter 5
;; Computing with Register Machines

;; 5.1
;; Designing Register Machines

(define (gcd a b)
  (if (= b 0)
    a
    (gcd b (remainder a b))))

#| 5.1 |#

(define (factorial n)
  (define (iter product counter)
    (if (> counter n)
      product
      (iter
        (* counter product)
        (+ counter 1))))
  (iter 1 1))

;; A Language for Describing Register Machines

(define gcd-data-paths
  '(data-paths
     (registers
       ((name a)
        (buttons ((name a<-b) (source (register b)))))
       ((name b)
        (buttons ((name b<-t) (source (register t)))))
       ((name t)
        (buttons ((name t<-r) (source (operation rem))))))
     (operations
       ((name rem)
        (inpus (register a) (register b)))
       ((name =)
        (inputs (register b) (constant 0))))))

(define gcd-controller
  '(controller
    test-b
      (test =)
      (branch (label gcd-done))
      (t<-r)
      (a<-b)
      (b<-t)
      (goto (label test-b))
    gcd-done))

(define gcd-succinct
  '(controller
    test-b
      (test (op =) (reg b) (const 0))
      (branch (label gcd-done))
      (assign t (op rem) (reg a) (reg b))
      (assign a (reg b))
      (assign b (reg t))
      (goto (label test-b))
    gcd-done))

#| 5.2 |#

(define factorial-controller
  '(controller
      (assign product (const 1))
      (assign counter (const 1))
    test-counter
      (test (op >) (reg counter) (reg n))
      (branch (label fact-done))
      (assign product (op *) (reg counter) (reg product))
      (assign counter (op +) (reg counter) (const 1))
      (goto (label test-counter))
    fact-done))

(define gcd-new
  '(controller
    gcd-loop
      (assign a (op read))
      (assign b (op read))
    test-b
      (test (op =) (reg b) (const 0))
      (branch (label gcd-done))
      (assign t (op rem) (reg a) (reg b))
      (assign a (reg b))
      (assign b (reg t))
      (goto (label test-b))
    gcd-done
      (perform (op print) (reg a))
      (goto (label gcd-loop))))

;; Abstraction in Machine Design

(define (remainder n d)
  (if (< n d)
    n
    (remainder (- n d) d)))

(define gcd-prim
  '(controller
    test-b
      (test (op =) (reg b) (const 0))
      (branch (label gcd-done))
      (assign t (reg a))
    rem-loop
      (test (op <) (reg t) (reg b))
      (branch (label rem-done))
      (assign t (op -) (reg t) (reg b))
      (goto (label rem-loop))
    rem-done
      (assign a (reg b))
      (assign b (reg t))
      (goto (label test-b))
    gcd-done))

#| 5.3 |#

(define (sqrt x)
  (define (square x) (* x x))
  (define (average a b) (/ (+ a b) 2))
  (define (good-enough? guess)
    (< (abs (- (square guess) x)) 0.001))
  (define (improve guess)
    (average guess (/ x guess)))
  (define (sqrt-iter guess)
    (if (good-enough? guess)
      guess
      (sqrt-iter (improve guess))))
  (sqrt-iter 1.0))

(define sqrt-controller-1
  '(controller
      (assign guess (const 1.0))
    test-guess
      (test (op good-enough?) (reg guess))
      (branch (label sqrt-done))
      (assign guess (op improve) (reg guess))
      (goto (label test-guess))
    sqrt-done))

(define sqrt-controller-2
  '(controller
      (assign guess (const 1.0))
    test-guess
      (test (op good-enough?) (reg guess))
      (branch (label sqrt-done))
      (assign t (op /) (reg x) (reg guess))
      (assign guess (op average) (reg guess) (reg t))
      (goto (label test-guess))
    sqrt-done))

(define sqrt-controller-3
  '(controller
      (assign guess (const 1.0))
    test-guess
      (test (op good-enough?) (reg guess))
      (branch (label sqrt-done))
      (assign t (op /) (reg x) (reg guess))
      (assign t (op +) (reg t) (reg guess))
      (assign guess (op /) (reg t) (const 2))
      (goto (label test-guess))
    sqrt-done))

(define sqrt-controller-4
  '(controller
      (assign guess (const 1.0))
    test-guess
      (assign t (op *) (reg guess) (reg guess))
      (assign t (op -) (reg t) x)
      (assign t (op abs) (reg t))
      (test (op <) (reg t) (const 0.001))
      (branch (label sqrt-done))
      (assign t (op /) (reg x) (reg guess))
      (assign t (op +) (reg t) (reg guess))
      (assign guess (op /) (reg t) (const 2))
      (goto (label test-guess))
    sqrt-done))

;; Subroutines

(define gcd-twice
  '(controller
    gcd-1
      (test (op =) (reg b) (const 0))
      (branch (label after-gcd-1))
      (assign t (op rem) (reg a) (reg b))
      (assign a (reg b))
      (assign b (reg t))
      (goto (label gcd-1))
    after-gcd-1
      ; ...
    gcd-2
      (test (op =) (reg b) (const 0))
      (branch (label after-gcd-2))
      (assign t (op rem) (reg a) (reg b))
      (assign a (reg b))
      (assign b (reg t))
      (goto (label gcd-2))
    after-gcd-2))

(define gcd-sub
  '(controller
    gcd
      (test (op =) (reg b) (const 0))
      (branch (label gcd-done))
      (assign t (op rem) (reg a) (reg b))
      (assign a (reg b))
      (assign b (reg t))
      (goto (label gcd))
    gcd-done
      (test (op =) (reg continue) (const 0))
      (branch (label after-gcd-1))
      (goto (label after-gcd-2))
      ; ...
      (assign continue (const 0))
      (goto (label gcd))
    after-gcd-1
      ; ...
      (assign continue (const 1))
      (goto (label gcd)
    after-gcd-2)))

(define gcd-sub-label
  '(controller
    gcd
      (test (op =) (reg b) (const 0))
      (branch (label gcd-done))
      (assign t (op rem) (reg a) (reg b))
      (assign a (reg b))
      (assign b (reg t))
      (goto (label gcd))
    gcd-done
      (goto (reg continue))
      ; ...
      (assign continue (label after-gcd-1))
      (goto (label gcd))
    after-gcd-1
      ; ...
      (assign continue (label after-gcd-2))
      (goto (label gcd)
    after-gcd-2)))

;; Using a Stack to Implement Recursion

(define (factorial-rec n)
  (if (= n 1)
    1
    (* (factorial (- n 1)) n)))

(define fact-controller
  '(controller
      (assign continue (label fact-done))
    fact-loop
      (test (op =) (reg n) (const 1))
      (branch (label base-case))
      (save continue)
      (save n)
      (assign n (op -) (reg n) (const 1))
      (assign continue (label after-fact))
      (goto (label fact-loop))
    after-fact
      (restore n)
      (restore continue)
      (assign val (op *) (reg n) (reg val))
      (goto (reg continue))
    base-case
      (assign val (const 1))
      (goto (reg continue))
    fact-done))

(define (fib n)
  (if (< n 2)
    n
    (+ (fib (- n 1)) (fib (- n 2)))))

(define fib-controller
  '(controller
      (assign continue (label fib-done))
    fib-loop
      (test (op <) (reg n) (const 2))
      (branch (label immediate answer))
      (save continue)
      (assign continue (label afterfib-n-1))
      (save n)
      (assign n (op -) (reg n) (const 1))
      (goto (label fib-loop))
    afterfib-n-1
      (restore n)
      (restore continue)
      (assign n (op -) (reg n) (const 2))
      (save continue)
      (assign continue (label afterfib-n-2))
      (save val)
      (goto (label fib-loop))
    afterfib-n-2
      (assign n (reg val))
      (restore val)
      (restore continue)
      (assign val (op +) (reg val) (reg n))
      (goto (reg continue))
    immediate-answer
      (assign val (reg n))
      (goto (reg continue))
    fib-done))

#| 5.4 |#

(define (expt b n)
  (if (= n 0)
    1
    (* b (expt b (- n 1)))))

(define expt-controller
  '(controller
      (assign continue (label expt-done))
    expt-loop
      (test (op =) (reg n) (const 0))
      (branch (label base-case))
      (save continue)
      (save n)
      (assign n (op -) (reg n) (const 1))
      (assign continue (label after-expt))
      (goto (label expt-loop))
    after-expt
      (restore n)
      (restore continue)
      (assign val (op *) (reg b) (reg val))
      (goto (reg continue))
    base-case
      (assign val (const 1))
      (goto (reg continue))
    expt-done))

(define (expt- b n)
  (define (expt-iter counter product)
    (if (= counter 0)
      product
      (expt-iter (- counter 1) (* b product))))
  (expt-iter n 1))

(define expt-iter-controller
  '(controller
      (assign counter (reg n))
      (assign product (const 1))
    test-counter
      (test (op =) (reg counter) (const 0))
      (branch (label expt-done))
      (assign counter (op -) (reg counter) (const 1))
      (assign product (op *) (reg b) (reg product))
      (goto (label test-counter))
    expt-done))

#| 5.6 |#

(define fib-controller-trimmed
  '(controller
      (assign continue (label fib-done))
    fib-loop
      (test (op <) (reg n) (const 2))
      (branch (label immediate answer))
      (save continue)
      (assign continue (label afterfib-n-1))
      (save n)
      (assign n (op -) (reg n) (const 1))
      (goto (label fib-loop))
    afterfib-n-1
      (restore n)
      ;; (restore continue)
      (assign n (op -) (reg n) (const 2))
      ;; (save continue)
      (assign continue (label afterfib-n-2))
      (save val)
      (goto (label fib-loop))
    afterfib-n-2
      (assign n (reg val))
      (restore val)
      (restore continue)
      (assign val (op +) (reg val) (reg n))
      (goto (reg continue))
    immediate-answer
      (assign val (reg n))
      (goto (reg continue))
    fib-done))

;; Instruction Summary

#| (assign [register-name] (reg [register-name])) |#
#| (assign [register-name] (const [constant-value])) |#
#| (assign [register-name] (op [operation-name]) [input-1] ... [input-n]) |#
#| (perform (op [operation-name]) [input-1] ... [input-n]) |#
#| (test (op [operation-name]) [input-1] ... [input-n]) |#
#| (branch (label [label-name])) |#
#| (goto (label [label-name])) |#

#| (assign [register-name] (label [label-name])) |#
#| (goto (reg [register-name])) |#

#| (save [register-name]) |#
#| (restore [register-name]) |#